0000000000142583
AUTHOR
Elisabetta Barocelli
Synthesis and Structure-Activity Relationships of Amino Acid Conjugates of Cholanic Acid as Antagonists of the EphA2 Receptor
The Eph–ephrin system plays a critical role in tumor growth and vascular functions during carcinogenesis. We had previously identified cholanic acid as a competitive and reversible EphA2 antagonist able to disrupt EphA2-ephrinA1 interaction and to inhibit EphA2 activation in prostate cancer cells. Herein, we report the synthesis and biological evaluation of a set of cholanic acid derivatives obtained by conjugation of its carboxyl group with a panel of naturally occurring amino acids with the aim to improve EphA2 receptor inhibition. Structure-activity relationships indicate that conjugation of cholanic acid with linear amino acids of small size leads to effective EphA2 antagonists whereas …
Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands
Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylami…
Novel Analgesic Agents Obtained by Molecular Hybridization of Orthosteric and Allosteric Ligands
AbstractDespite the high incidence of acute and chronic pain in the general population, the efficacy of currently available medications is unsatisfactory. Insufficient management of pain has a profound impact on the quality of life and can have serious physical, psychological, social, and economic consequences. This unmet need reflects a failure to develop novel classes of analgesic drugs with superior clinical properties and lower risk of abuse. Nevertheless, recent advances in our understanding of the neurobiology of pain are offering new opportunities for developing different therapeutic approaches. Among those, the activation of M2 muscarinic acetylcholine receptors, which play a key ro…
Δ5-Cholenoyl-amino acids as selective and orally available antagonists of the Epheephrin system
The Eph receptor-ephrin system is an emerging target for the development of novel anti-angiogenic therapies. Research programs aimed at developing small-molecule antagonists of the Eph receptors are still in their initial stage as available compounds suffer from pharmacological drawbacks, limiting their application in vitro and in vivo. In the present work, we report the design, synthesis and evaluation of structure-activity relationships of a class of Δ(5)-cholenoyl-amino acid conjugates as Eph-ephrin antagonists. As a major achievement of our exploration, we identified N-(3β-hydroxy-Δ(5)-cholen-24-oyl)-L-tryptophan (UniPR1331) as the first small molecule antagonist of the Eph-ephrin syste…
Amino Acid Derivatives as Palmitoylethanolamide Prodrugs: Synthesis, In Vitro Metabolism and In Vivo Plasma Profile in Rats
Palmitoylethanolamide (PEA) has antinflammatory and antinociceptive properties widely exploited in veterinary and human medicine, despite its poor pharmacokinetics. Looking for prodrugs that could progressively release PEA to maintain effective plasma concentrations, we prepared carbonates, esters and carbamates at the hydroxyl group of PEA. Chemical stability (pH 7.4) and stability in rat plasma and liver homogenate were evaluated by in vitro assays. Carbonates and carbamates resulted too labile and too resistant in plasma, respectively. Ester derivatives, prepared by conjugating PEA with various amino acids, allowed to modulate the kinetics of PEA release in plasma and stability in liver …
Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis.
Background and Aims: Changes in gut serotonin content have been described in Inflammatory Bowel Disease and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous serotonin through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of Inflammatory Bowel Disease. Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT…