6533b82efe1ef96bd12928d0

RESEARCH PRODUCT

Δ5-Cholenoyl-amino acids as selective and orally available antagonists of the Epheephrin system

Antonella BugattiIlaria ZanottiMarco RusnatiRiccardo CastelliSilvia RivaraIftiin Hassan-mohamedDaniele PalaAlessio LodolaDonatella CallegariFederica VacondioMarco MorSimona BertoniCarmine GiorgioClaudio FestucciaMatteo IncertiMassimiliano TognoliniElisabetta Barocelli

subject

MaleModels MolecularAnti-angiogenic agentsAngiogenesis InhibitorsEpheephrin antagonistsPharmacologyEphA2MiceStructure-Activity RelationshipIn vivoCell Line TumorOral bioavailabilityProteineprotein interaction inhibitorsDrug DiscoveryAnimalsHumansStructure–activity relationshipEphrinAmino AcidsReceptorReceptors Eph Familychemistry.chemical_classificationPharmacologyDose-Response Relationship DrugMolecular StructureAnti-angiogenic agents; Bile acids; EphA2; Epheephrin antagonists; Oral bioavailability; Proteineprotein interaction inhibitors; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryErythropoietin-producing hepatocellular (Eph) receptorEndothelial CellsBiological activityGeneral MedicineEPH receptor A2biological factorsBile acidsAmino acidchemistryBiochemistryEphrins

description

The Eph receptor-ephrin system is an emerging target for the development of novel anti-angiogenic therapies. Research programs aimed at developing small-molecule antagonists of the Eph receptors are still in their initial stage as available compounds suffer from pharmacological drawbacks, limiting their application in vitro and in vivo. In the present work, we report the design, synthesis and evaluation of structure-activity relationships of a class of Δ(5)-cholenoyl-amino acid conjugates as Eph-ephrin antagonists. As a major achievement of our exploration, we identified N-(3β-hydroxy-Δ(5)-cholen-24-oyl)-L-tryptophan (UniPR1331) as the first small molecule antagonist of the Eph-ephrin system effective as an anti-angiogenic agent in endothelial cells, bioavailable in mice by the oral route and devoid of biological activity on G protein-coupled and nuclear receptors targeted by bile acid derivatives.

10.1016/j.ejmech.2015.08.048http://hdl.handle.net/11379/463063