0000000000142857
AUTHOR
Roberto Percacci
Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian renormalization group equation. We begin by discussing various cutoff schemes, i.e. ways of implementing the Wilsonian cutoff procedure. We compare the beta functions of the gravitational couplings obtained with different schemes, studying first the contribution of matter fields and then the so-called Einstein-Hilbert truncation, where only the cosmological constant and Newton's constant are retained. In this context we make connection with…
Fixed points of nonlinear sigma models in d>2
Using Wilsonian methods, we study the renormalization group flow of the Nonlinear Sigma Model in any dimension $d$, restricting our attention to terms with two derivatives. At one loop we always find a Ricci flow. When symmetries completely fix the internal metric, we compute the beta function of the single remaining coupling, without any further approximation. For $d>2$ and positive curvature, there is a nontrivial fixed point, which could be used to define an ultraviolet limit, in spite of the perturbative nonrenormalizability of the theory. Potential applications are briefly mentioned.
Quantum gravity with torsion and non-metricity
We study the renormalization of theories of gravity with an arbitrary (torsionful and non-metric) connection. The class of actions we consider is of the Palatini type, including the most general terms with up to two derivatives of the metric, but no derivatives of the connection. It contains 19 independent parameters. We calculate the one loop beta functions of these parameters and find their fixed points. The Holst subspace is discussed in some detail and found not to be stable under renormalization. Some possible implications for ultraviolet and infrared gravity are discussed.
Critical reflections on asymptotically safe gravity
Asymptotic safety is a theoretical proposal for the ultraviolet completion of quantum field theories, in particular for quantum gravity. Significant progress on this program has led to a first characterization of the Reuter fixed point. Further advancement in our understanding of the nature of quantum spacetime requires addressing a number of open questions and challenges. Here, we aim at providing a critical reflection on the state of the art in the asymptotic safety program, specifying and elaborating on open questions of both technical and conceptual nature. We also point out systematic pathways, in various stages of practical implementation, towards answering them. Finally, we also take…