0000000000143071

AUTHOR

Parvana Hajieva

0000-0003-3988-3608

showing 20 related works from this author

Biosensor-based kinetic and thermodynamic characterization of opioids interaction with human μ-opioid receptor.

2019

Development of opioid analgesics with minimal side effects requires substantial knowledge on structure-kinetic and -thermodynamic relationship of opioid-receptor interactions. Here, combined kinetics and thermodynamics of opioid agonist binding to human μ-opioid receptor (h-μOR) was investigated using real-time label-free surface plasmon resonance (SPR)-based method. The N-terminal end truncated and C-terminal 6His-tagged h-μOR was constructed and expressed in E. coli. Receptor was purified, detergent-solubilized and characterized by circular dichroism. The uniform immobilization of h-μOR on Ni-NTA chips was achieved using hybrid capture-coupling approach followed by reconstitution in lipid…

Circular dichroismThermodynamic equilibriummedicine.drug_classEnthalpyReceptors Opioid muPharmaceutical Science02 engineering and technology(+)-NaloxoneBiosensing Techniques030226 pharmacology & pharmacy03 medical and health sciences0302 clinical medicineOpioid receptormedicineEscherichia coliHumansSurface plasmon resonanceLipid bilayerMorphineChemistryNaloxone021001 nanoscience & nanotechnologyAnalgesics OpioidKineticsOpioidBiophysicsThermodynamics0210 nano-technologymedicine.drugEuropean journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
researchProduct

Retrotransposon activation by distressed mitochondria in neurons

2020

Retrotransposon activation occurs in a variety of neurological disorders including multiple sclerosis and Alzheimer's Disease. While the origins of disease-related retrotransposon activation have remained mostly unidentified, this phenomenon may well contribute to disease progression by inducing inflammation, disrupting transcription and, potentially, genomic insertion. Here, we report that the inhibition of mitochondrial respiratory chain complex I by pharmacological agents widely used to model Parkinson's disease leads to a significant increase in expression of the ORF1 protein of the long interspersed nucleotide element 1 (LINE1) retrotransposon in human dopaminergic LUHMES cells. These …

Male0301 basic medicineParkinson's diseaseRetroelementsBiophysicsInflammationRetrotransposonMitochondrionBiologyBiochemistryCell Line03 medical and health sciences0302 clinical medicineMesencephalonTranscription (biology)medicineAnimalsHumansMitochondrial respiratory chain complex IMolecular BiologyNeuronsElectron Transport Complex INeurodegenerationfood and beveragesCell BiologyDNA Methylationmedicine.diseaseMitochondriaCell biologyMice Inbred C57BLLong Interspersed Nucleotide Elements030104 developmental biology030220 oncology & carcinogenesisDNA methylationmedicine.symptomBiochemical and Biophysical Research Communications
researchProduct

Phenothiazine-mediated lifespan extension in Caenorhabditis elegans

2013

Agingchemistry.chemical_compoundEndocrinologychemistryPhenothiazineGeneticsCell BiologyBiologybiology.organism_classificationMolecular BiologyBiochemistryCaenorhabditis elegansCell biologyExperimental Gerontology
researchProduct

Novel imine antioxidants at low nanomolar concentrations protect dopaminergic cells from oxidative neurotoxicity.

2009

Strong evidence indicates that oxidative stress may be causally involved in the pathogenesis of Parkinson's disease. We have employed human dopaminergic neuroblastoma cells and rat primary mesencephalic neurons to assess the protective potential of three novel bisarylimine antioxidants on dopaminergic cell death induced by complex I inhibition or glutathione depletion. We have found that exceptionally low concentrations (EC(50) values approximately 20 nM) of these compounds (iminostilbene, phenothiazine, and phenoxazine) exhibited strong protective effects against the toxicities of MPP(+), rotenone, and l-buthionine sulfoximine. Investigating intracellular glutathione levels, it was found t…

Antioxidantmedicine.medical_treatmentDopamineGlutathione reductaseNeurotoxinsBiologymedicine.disease_causeProtein oxidationBiochemistryAntioxidantsLipid peroxidationRats Sprague-DawleyCellular and Molecular Neurosciencechemistry.chemical_compoundCell Line TumormedicineAnimalsHumansCells CulturedMembrane Potential MitochondrialCell DeathDose-Response Relationship DrugNeurotoxicityParkinson DiseaseRotenoneGlutathionemedicine.diseaseGlutathioneMitochondriaRatsSubstantia NigraOxidative StressNeuroprotective AgentschemistryBiochemistryElectron Transport Chain Complex ProteinsCytoprotectionNerve DegenerationIminesOxidation-ReductionOxidative stressJournal of neurochemistry
researchProduct

Analysis of BNIP3 and BNIP3L/Nix expression in cybrid cell lines harboring two LHON-associated mutations.

2019

Mitochondria are key players in cell death through the activation of the intrinsic apoptosis pathway. BNIP3 and BNIP3L/Nix are outer mitochondrial membrane bifunctional proteins which because of containing both BH3 and LIR domains play a role in cellular response to stress by regulation of apoptosis and selective autophagy. Leber’s Hereditary Optic Neuropathy (LHON) is the most common mitochondrial disease in adults, characterized by painless loss of vision caused by atrophy of the optic nerve. The disease in over 90% of cases is caused by one of three mutations in the mitochondrial genome: 11778G>A, 3460G>A or 14484T>C. The pathogenic processes leading to optic nerve degeneration …

AdultProgrammed cell deathMitochondrial diseaseApoptosisOptic Atrophy Hereditary LeberMitochondrionBiologymedicine.disease_causeGeneral Biochemistry Genetics and Molecular BiologyCell LineMitochondrial Proteins03 medical and health sciencesAtrophyProto-Oncogene ProteinsmedicineAutophagyHumans0303 health sciencesMutationTumor Suppressor Proteins030302 biochemistry & molecular biologyAutophagyIntrinsic apoptosisMembrane Proteinsmedicine.diseaseeye diseasesCell biologyApoptosisGenome MitochondrialMutationActa biochimica Polonica
researchProduct

Antioxidants as a Potential Therapy Against Age-Related Neurodegenerative Diseases: Amyloid Beta Toxicity and Alzheimers Disease

2006

Alzheimer's disease (AD) is a progressive age-related neurodegenerative disorder with distinct neuropathological features. Extracellular plaques, consisting of aggregated amyloid peptides of 39-43 amino acids are one of the most prominent pathological hallmarks of this disease. Although the exact neurochemical effector mechanism of Abeta aggregation is not yet elucidated, age-associated disturbances of metal ion metabolism have been proposed to promote the formation of aggregates from soluble Abeta. Oxidative stress is postulated to be a downstream effect of Abeta-metal ion interactions. Therefore, the modulation of brain metal metabolism and attenuation of oxidative stress by antioxidant m…

Agingmedicine.medical_specialtyAntioxidantAmyloidAmyloid betamedicine.medical_treatmentPharmacologymedicine.disease_causeAntioxidantsNeurochemicalDegenerative diseaseAlzheimer DiseaseInternal medicinemental disordersDrug DiscoverymedicineAnimalsHumansPharmacologyAmyloid beta-PeptidesMetal metabolismbiologyChemistryNeurodegenerative Diseasesmedicine.diseaseEndocrinologybiology.proteinAlzheimer's diseaseOxidative stressCurrent Pharmaceutical Design
researchProduct

Novel Insights into the Cellular Localization and Regulation of the Autophagosomal Proteins LC3A, LC3B and LC3C

2020

Macroautophagy is a conserved degradative process for maintaining cellular homeostasis and plays a key role in aging and various human disorders. The microtubule-associated protein 1A/1B light chain 3B (MAP1LC3B or LC3B) is commonly analyzed as a key marker for autophagosomes and as a proxy for autophagic flux. Three paralogues of the LC3 gene exist in humans: LC3A, LC3B and LC3C. The molecular function, regulation and cellular localization of LC3A and LC3C have not been investigated frequently, even if a similar function to that described for LC3B appears likely. Here, we have selectively decapacitated LC3B by three separate strategies in primary human fibroblasts and analyzed the evoked e…

autophagysequestosome 1 (p62)LC3CATG8GABARAPGABARAPCellular homeostasisProtein lipidationsirtuin 1ArticleCell LineAntibody SpecificityHumansSirtuinsAmino Acid SequenceLC3BRNA Small InterferingLC3Alcsh:QH301-705.5PhylogenyCellular localizationCell NucleusBinding SitesbiologyChemistrySirtuin 1AutophagosomesAutophagy-Related Protein 8 FamilyGeneral MedicineFibroblastsLipidsCell biologyProtein Transportlcsh:Biology (General)Gene Knockdown TechniquesSirtuinbiology.proteinApoptosis Regulatory ProteinsMicrotubule-Associated ProteinsATG8MAP1LC3BSubcellular FractionsCells
researchProduct

Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson's disease

2010

Oxidative stress is involved in the pathogenesis of various neurodegenerative disorders, conventional antioxidant strategies have yet been of limited success. We have employed transgenic Caenorhabditis elegans expressing DsRed2 in dopaminergic neurons and CFP pan-neuronally, to characterize in larval and adult animals the effects of rotenone and 1-methyl-4-phenyl-pyridinium (MPP(+)) on the dopaminergic system. Investigating the antioxidant phenothiazine and different derived antipsychotic drugs, it was found that free phenothiazine exerted strong neuroprotection at the cellular level and resulted in a better performance in behavioral assays, whereas apomorphine and other dopamine agonists o…

InsecticidesApomorphineChlorpromazineDopamineBiologyPharmacologyNeuroprotectionlcsh:RC321-571Animals Genetically Modifiedchemistry.chemical_compoundAntipsychotic drugParkinsonian DisordersDopaminePhenothiazinesRotenonemedicineAnimalsHumansChlorpromazineCaenorhabditis eleganslcsh:Neurosciences. Biological psychiatry. Neuropsychiatrychemistry.chemical_classificationNeuronsDopaminergic neuronModels GeneticNeurodegenerationDopaminergicRotenonemedicine.diseaseDisease Models AnimalNeuroprotective AgentsNeurologychemistryDopamine receptorNerve DegenerationAntioxidantTricyclicmedicine.drugAntipsychotic AgentsNeurobiology of Disease
researchProduct

Comparative Evaluation of Biochemical Antioxidants as Neuroprotective Agents

2010

business.industryPhysiology (medical)MedicinePharmacologybusinessBiochemistryNeuroprotectionComparative evaluationFree Radical Biology and Medicine
researchProduct

Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxy…

2019

Abstract Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problem…

0301 basic medicineClinical BiochemistryBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCysteineMolecular Biologychemistry.chemical_classificationMethionineSelenocysteinebiologyWaterGlutathionebiology.organism_classificationAdaptation PhysiologicalGlutathioneAmino acidOxygen030104 developmental biologychemistryGenetic CodeBiophysicsEnergy source030217 neurology & neurosurgeryCysteineArchaeaHydrothermal ventBiological Chemistry
researchProduct

The Cleavage Product of Amyloid-β Protein Precursor sAβPPα Modulates BAG3-Dependent Aggresome Formation and Enhances Cellular Proteasomal Activity

2015

Alzheimer's disease (AD) is the major age-associated form of dementia characterized by gradual cognitive decline. Aberrant cleavage of the amyloid-β protein precursor (AβPP) is thought to play an important role in the pathology of this disease. Two principal AβPP processing pathways exist: amyloidogenic cleavage of AβPP resulting in production of the soluble N-terminal fragment sAβPPβ, amyloid-β (Aβ), which accumulates in AD brain, and the AβPP intracellular domain (AICD) sAβPPα, p3 and AICD are generated in the non-amyloidogenic pathway. Prevalence of amyloidogenic versus non-amyloidogenic processing leads to depletion of sAβPPα and an increase in Aβ. Although sAβPPα is a well-accepted neu…

Proteasome Endopeptidase ComplexTime FactorsCell SurvivalLeupeptinsGreen Fluorescent ProteinsCysteine Proteinase InhibitorsProtein degradationProtein aggregationBiologyTransfectionBAG3Rats Sprague-DawleyAmyloid beta-Protein PrecursorAnimalsHumansRNA MessengerRNA Small InterferingProtein precursorCells CulturedAdaptor Proteins Signal TransducingNeuronsAmyloid beta-PeptidesDose-Response Relationship DrugGeneral NeuroscienceHEK 293 cellsBrainGeneral MedicineFibroblastsEmbryo MammalianRatsCell biologyPsychiatry and Mental healthClinical PsychologyHEK293 CellsProteostasisAggresomeGene Expression RegulationBiochemistryProteasomeProteolysisAmyloid Precursor Protein SecretasesGeriatrics and GerontologyApoptosis Regulatory ProteinsJournal of Alzheimer's Disease
researchProduct

Modern diversification of the amino acid repertoire driven by oxygen

2017

All extant life employs the same 20 amino acids for protein biosynthesis. Studies on the number of amino acids necessary to produce a foldable and catalytically active polypeptide have shown that a basis set of 7-13 amino acids is sufficient to build major structural elements of modern proteins. Hence, the reasons for the evolutionary selection of the current 20 amino acids out of a much larger available pool have remained elusive. Here, we have analyzed the quantum chemistry of all proteinogenic and various prebiotic amino acids. We find that the energetic HOMO-LUMO gap, a correlate of chemical reactivity, becomes incrementally closer in modern amino acids, reaching the level of specialize…

0301 basic medicinechemistry.chemical_classificationMultidisciplinarySelenocysteineChemistryRadicalOrigin of LifeTryptophanGenetic codeAmino acidOxygen03 medical and health scienceschemistry.chemical_compound030104 developmental biologyModels ChemicalBiochemistryAbiogenesisPhysical SciencesProtein biosynthesisAmino AcidsTyrosineProceedings of the National Academy of Sciences
researchProduct

Prooxidative chain transfer activity by thiol groups in biological systems

2020

Cysteine is arguably the best-studied biological amino acid, whose thiol group frequently participates in catalysis or ligand binding by proteins. Still, cysteine's unusual biological distribution has remained mysterious, being strikingly underrepresented in transmembrane domains and on accessible protein surfaces, particularly in aerobic life forms (“cysteine anomaly”). Noting that lipophilic thiols have been used for decades as radical chain transfer agents in polymer chemistry, we speculated that the rapid formation of thiyl radicals in hydrophobic phases might provide a rationale for the cysteine anomaly. Hence, we have investigated the effects of dodecylthiol and related compounds in i…

0301 basic medicineFree RadicalsDNA damageLipid peroxidationClinical BiochemistryProtein oxidationBiochemistryLipid peroxidation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCysteine oxidationAnimalsHumansCysteineSulfhydryl CompoundsCaenorhabditis eleganslcsh:QH301-705.5chemistry.chemical_classificationlcsh:R5-920Organic ChemistryAmino acidTransmembrane domain030104 developmental biologylcsh:Biology (General)Structural biologychemistryBiochemistryThiyl radicalsThiolRadical propagationlcsh:Medicine (General)Protein oxidation030217 neurology & neurosurgeryResearch PaperCysteineRedox Biology
researchProduct

Impaired calcium homeostasis in aged hippocampal neurons

2009

Abstract Development of neurodegenerative diseases such as Alzheimer's and Parkinson's disease is strongly age-associated. The impairment of calcium homeostasis is considered to be a key pathological event leading to neuronal dysfunction and cell death. However, the exact impact of aging on calcium homeostasis in neurons remains largely unknown. In the present work we have investigated intracellular calcium levels in cultured primary hippocampal neurons from young (2 months) and aged (24 months) rat brains. Upon stimulation with glutamate or hydrogen peroxide aged neurons in comparison to young neurons demonstrated an increased vulnerability to these disease-related toxins. Measurement of c…

Agingmedicine.medical_specialtyNeurotoxinsGlutamic Acidchemistry.chemical_elementHippocampusBiologyCalciumHippocampusCalcium in biologyRats Sprague-DawleyInternal medicinemedicineAnimalsCalcium SignalingOrganic ChemicalsCells CulturedCellular SenescenceNeuronsCalcium metabolismCalpainGeneral NeuroscienceNeurodegenerationGlutamate receptorCalpainHydrogen PeroxideOxidantsmedicine.diseaseRatsOxidative Stressmedicine.anatomical_structureEndocrinologynervous systemchemistryNerve Degenerationbiology.proteinCalciumNeuronNeuroscienceNeuroscience Letters
researchProduct

Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria

2008

Humans and most other animals use 2 different genetic codes to translate their hereditary information: the standard code for nuclear-encoded proteins and a modern variant of this code in mitochondria. Despite the pivotal role of the genetic code for cell biology, the functional significance of the deviant mitochondrial code has remained enigmatic since its first description in 1979. Here, we show that profound and functionally beneficial alterations on the encoded protein level were causative for the AUA codon reassignment from isoleucine to methionine observed in most mitochondrial lineages. We demonstrate that this codon reassignment leads to a massive accumulation of the easily oxidized …

Respiratory chainOxidative phosphorylationMitochondrionBiologyDNA MitochondrialGenomeAntioxidantsElectron Transportchemistry.chemical_compoundMethionineAnimalsIsoleucineInner mitochondrial membraneGeneticschemistry.chemical_classificationGenomeMultidisciplinaryMethionineFungiPlantsBiological SciencesGenetic codeBiological EvolutionAmino acidOxidative StresschemistryGenetic CodeMitochondrial MembranesDatabases Nucleic AcidProceedings of the National Academy of Sciences
researchProduct

Membrane protein oxidation determines neuronal degeneration

2015

Oxidative stress is an early hallmark in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. However, the critical biochemical effector mechanisms of oxidative neurotoxicity have remained surprisingly elusive. In screening various peroxides and potential substrates of oxidation for their effect on neuronal survival, we observed that intramembrane compounds were significantly more active than aqueous or amphiphilic compounds. To better understand this result, we synthesized a series of competitive and site-specific membrane protein oxidation inhibitors termed aminoacyllipids, whose structures were designed on the basis of amino acids frequently found at the protein-lipi…

Cell SurvivalBiologyProtein oxidationmedicine.disease_causeBiochemistryProtein Structure SecondaryRats Sprague-DawleyCellular and Molecular Neurosciencechemistry.chemical_compoundmedicineAnimalsLipid bilayerCells CulturedNeuronsSphingosineNeurodegenerationNeurotoxicityMembrane Proteinsmedicine.diseaseTransmembrane proteinRatsCell biologyOxidative StressMembrane proteinchemistryNerve DegenerationReactive Oxygen SpeciesOxidation-ReductionOxidative stressJournal of Neurochemistry
researchProduct

Downregulation of PMCA2 increases the vulnerability of midbrain neurons to mitochondrial complex I inhibition

2013

Parkinson's disease is an age-associated disorder characterized by selective degeneration of dopaminergic neurons. The molecular mechanisms underlying the selective vulnerability of this subset of neurons are, however, not fully understood. Employing SH-SY5Y neuroblastoma cells and primary mesencephalic neurons, we here demonstrate a significant increase in cytosolic calcium after inhibition of mitochondrial complex I by means of MPP(+), which is a well-established environmental toxin-based in vitro model of Parkinson's disease. This increase in calcium is correlated with a downregulation of the neuron-specific plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2). Interestingly, two other import…

Male1-Methyl-4-phenylpyridiniummedicine.medical_specialtySERCADown-Regulationchemistry.chemical_elementCalciumToxicologyCREBRats Sprague-DawleyPlasma Membrane Calcium-Transporting ATPaseschemistry.chemical_compoundDownregulation and upregulationMesencephalonCell Line TumorInternal medicinemedicineAnimalsHumansCyclic AMP Response Element-Binding ProteinNeuronsCalcium metabolismElectron Transport Complex IbiologyGeneral NeuroscienceMPTPNeurodegenerationmedicine.diseaseRatsEndocrinologychemistrybiology.proteinCalciumsense organsIntracellularNeuroToxicology
researchProduct

The role of Plasma Membrane Calcium ATPases (PMCAs) in neurodegenerative disorders

2017

Selective degeneration of differentiated neurons in the brain is the unifying feature of neurodegenerative disorders such as Parkinson's disease (PD) or Alzheimer's disease (AD). A broad spectrum of evidence indicates that initially subtle, but temporally early calcium dysregulation may be central to the selective neuronal vulnerability observed in these slowly progressing, chronic disorders. Moreover, it has long been evident that excitotoxicity and its major toxic effector mechanism, neuronal calcium overload, play a decisive role in the propagation of secondary neuronal death after acute brain injury from trauma or ischemia. Under physiological conditions, neuronal calcium homeostasis is…

0301 basic medicineCalcium pumpExcitotoxicitychemistry.chemical_elementCalciumProtein oxidationmedicine.disease_causeProtein Structure SecondaryPlasma Membrane Calcium-Transporting ATPases03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansPhylogenyCalcium metabolismMembrane potentialChemistryGeneral NeuroscienceNeurodegenerationNeurodegenerative Diseasesmedicine.diseaseCytosol030104 developmental biologyNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3.

2009

The Hsc/Hsp70 co-chaperones of the BAG (Bcl-2-associated athanogene) protein family are modulators of protein quality control. We examined the specific roles of BAG1 and BAG3 in protein degradation during the aging process. We show that BAG1 and BAG3 regulate proteasomal and macroautophagic pathways, respectively, for the degradation of polyubiquitinated proteins. Moreover, using models of cellular aging, we find that a switch from BAG1 to BAG3 determines that aged cells use more intensively the macroautophagic system for turnover of polyubiquitinated proteins. This increased macroautophagic flux is regulated by BAG3 in concert with the ubiquitin-binding protein p62/SQSTM1. The BAG3/BAG1 ra…

BAG domainProteasome Endopeptidase ComplexProtein familyProtein degradationBAG3ubiquitinationGeneral Biochemistry Genetics and Molecular BiologyBAG1ArticleRats Sprague-DawleyMiceUbiquitinMicroscopy Electron TransmissionAutophagyAnimalsHumansSQSTM1Molecular BiologyCellular SenescenceAdaptor Proteins Signal TransducingBAG1General Immunology and MicrobiologybiologyGeneral Neurosciencep62ImmunohistochemistryCell biologyRatsDNA-Binding ProteinsproteasomeProteasomeBiochemistrybiology.proteinApoptosis Regulatory ProteinsFlux (metabolism)Transcription FactorsThe EMBO journal
researchProduct

Cell Culture Characterization of Prooxidative Chain-Transfer Agents as Novel Cytostatic Drugs

2021

Prooxidative therapy is a well-established concept in infectiology and parasitology, in which prooxidative drugs like artemisinin and metronidazole play a pivotal clinical role. Theoretical considerations and earlier studies have indicated that prooxidative therapy might also represent a promising strategy in oncology. Here, we have investigated a novel class of prooxidative drugs, namely chain-transfer agents, as cytostatic agents in a series of human tumor cell lines in vitro. We have found that different chain-transfer agents of the lipophilic thiol class (like dodecane-1-thiol) elicited half-maximal effective concentrations in the low micromolar range in SY5Y cells (human neuroblastoma)…

Cell Survivallipophilic thiolCellular differentiationPharmaceutical ScienceOrganic chemistryfree radical chain reactionAntineoplastic AgentschemotherapyAntioxidantsArticleAnalytical Chemistryradical propagationHeLaQD241-441Coordination ComplexesNeuroblastomaDrug DiscoverymedicineTumor Cells CulturedHumansDoxorubicinSulfhydryl CompoundsPhysical and Theoretical ChemistryCytotoxicityoxidative cell deathCell Proliferationprooxidative drugbiologyChemistryHEK 293 cellslipid peroxidationbiology.organism_classificationmedicine.diseaseCytostatic Agentschain-transfer agentIn vitroChemistry (miscellaneous)Cell cultureCancer researchMolecular MedicineNitrogen OxidesDrug Screening Assays Antitumormedicine.drugrate-limiting stepMolecules
researchProduct