0000000000143444
AUTHOR
Sanna Kirjavainen
Parvovirus capsid disorders cholesterol-rich membranes.
In this study canine parvovirus, CPV, was found to induce disorder in DPPC:cholesterol membranes in acidic conditions. This acidicity-induced fluidizing effect is suggested to originate from the N-terminus of the viral capsid protein VP1. In accordance with the model membrane studies, a fluidizing effect was seen also in the endosomal membranes during CPV infection implying an important functional role of the fluidization in the endocytic entry of the virus.
Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine
Jonna Nykky, Jenni E Tuusa, Sanna Kirjavainen, Matti Vuento, Leona GilbertNanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, FinlandAbstract: Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV) to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK) cells and canine fibroma cells (A72) displayed characteristic apoptotic events. Apoptosis was f…
Expression and subcellular targeting of canine parvovirus capsid proteins in baculovirus-transduced NLFK cells
AbstractA mammalian baculovirus delivery system was developed to study targeting in Norden Laboratories feline kidney (NLFK) cells of the capsid proteins of canine parvovirus (CPV), VP1 and VP2, or corresponding counterparts fused to EGFP. VP1 and VP2, when expressed alone, both had equal nuclear and cytoplasmic distribution. However, assembled form of VP2 had a predominantly cytoplasmic localization. When VP1 and VP2 were simultaneously present in cells, their nuclear localization increased. Thus, confocal immunofluorescence analysis of cells transduced with the different baculovirus constructs or combinations thereof in the absence or presence of infecting CPV revealed that the VP1 protei…
Coxsackievirus B3-Induced Cellular Protrusions: Structural Characteristics and Functional Competence▿†
ABSTRACT Virus-induced alterations in cell morphology play important roles in the viral life cycle. To examine the intracellular events of coxsackievirus B3 (CVB3) infection, green monkey kidney (GMK) cells were either inoculated with the virus or transfected with the viral RNA. Various microscopic and flow cytometric approaches demonstrated the emergence of CVB3 capsid proteins at 8 h posttransfection, followed by morphological transformation of the cells. The morphological changes included formation of membranous protrusions containing viral capsids, together with microtubules and actin. Translocation of viral capsids into these protrusions was sensitive to cytochalasin D, suggesting the …