0000000000144095

AUTHOR

Jon M. Miller

showing 12 related works from this author

Discovery of a redshifted X-ray emission line in the symbiotic neutron star binary 4U 1700+24

2005

We present the spectral analysis of an XMM-Newton observation of the X-ray binary 4U 1700+24, performed during an outburst in August 2002. The EPIC-PN spectrum above 1 keV can be modeled by a blackbody plus Comptonization model, as in previous observations. At lower energies, however, we detect a prominent soft excess, which we model with a broad Gaussian centered at ~0.5 keV. In the high resolution RGS spectrum we detect a single emission line, centered at 19.19^{+0.05}_{-0.09} \AA. We discuss two possible interpretations for this line: O VIII at redshift z=0.012^{+0.002}_{-0.004} or Ne IX at redshift z~0.4.

PhysicsGaussianAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)X-rayBinary numberFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsRedshiftsymbols.namesakeNeutron starSpace and Planetary SciencesymbolsBlack-body radiationEmission spectrumLine (formation)
researchProduct

On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

2010

X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/dE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up", wherein two or mor…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhotonSpectrometerAstrophysics::High Energy Astrophysical PhenomenaElectron shellFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyRelativistic diskSpectral lineaccretion accretion disks black hole physics instrumentation spectrographs methods analytical X-rays binariesNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceEmission spectrumAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSpectroscopyAstrophysics::Galaxy Astrophysics
researchProduct

A TEST of the NATURE of the FE K LINE in the NEUTRON STAR LOW-MASS X-RAY BINARY SERPENS X-1

2015

Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems, and in neutron star systems as well. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk, and broadened by strong relativistic effects. However, the nature of the lines in neutron star LMXBs has been under debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra HETGS observation of Serpens X-1. The observation was taken under the "continuous clocking" mode and thus free of photon pile-up effects. We carry out a systematic analys…

SerpensAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstrophysicsaccretion accretion disk01 natural sciencesSpectral linestars: neutronSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesEmission spectrum010303 astronomy & astrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and Astrophysicsprofiles; stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [accretion accretion disks; line]Astronomy and AstrophysicK-lineX-rays: binarieBlack holeNeutron starline: profileSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The Athena X-ray Integral Field Unit (X-IFU)

2016

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.

Computer science[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyObservatoriesField of viewAthena; Instrumentation; Space telescopes; X-ray Integral Field Unit; X-ray spectroscopy; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic Engineering7. Clean energy01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawObservatoryAthena Instrumentation Space telescopes X-ray spectroscopy X-ray Integral Field UnitAthena010303 astronomy & astrophysicsInstrumentation[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SpectroscopyHigh Energy Astrophysical Phenomena (astro-ph.HE)Equipment and servicesApplied MathematicsX-rayComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsProceedings of SPIE - the International Society for Optical EngineeringX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Spectral resolutionFOS: Physical sciencesMinute of arcSpace telescopesTelescope0103 physical sciencesX-raysElectronicOptical and Magnetic Materials[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Spectral resolutionElectrical and Electronic Engineering010306 general physicsSpectroscopyInstrumentation and Methods for Astrophysics (astro-ph.IM)Remote sensingPixelAstrophysics - Astrophysics of GalaxiesAstrophysics of Galaxies (astro-ph.GA)X-ray Integral Field Unit[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Telescopes
researchProduct

Orbital X‐Ray Variability of the Microquasar LS 5039

2005

The properties of the orbit and the donor star in the high mass X-ray binary microquasar LS 5039 indicate that accretion processes should mainly occur via a radiatively driven wind. In such a scenario, significant X-ray variability would be expected due to the eccentricity of the orbit. The source has been observed at X-rays by several missions, although with a poor coverage that prevents to reach any conclusion about orbital variability. Therefore, we conducted RossiXTE observations of the microquasar system LS 5039 covering a full orbital period of 4 days. Individual observations are well fitted with an absorbed power-law plus a Gaussian at 6.7 keV, to account for iron line emission that …

PhysicsPhotonAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysicsCompact starRadiationAstrophysicsEphemerisOrbital periodSynchrotronAccretion (astrophysics)law.inventionX-ray binariesSpace and Planetary SciencelawX-raysRaigs XAstrophysics::Earth and Planetary AstrophysicsQuasarsQuàsarsEstels binaris de raigs XThe Astrophysical Journal
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar

2017

We present $\emph{NuSTAR}$ observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, and 4U 1705-44. We observed 4U 1636-53 in the hard state, with an Eddington fraction, $F_{\mathrm{Edd}}$, of 0.01; GX 17+2 and 4U 1705-44 were in the soft state with fractions of 0.57 and 0.10, respectively. Each spectrum shows evidence for a relativistically broadened Fe K$_{\alpha}$ line. Through accretion disk reflection modeling, we constrain the radius of the inner disk in 4U 1636-53 to be $R_{in}=1.03\pm0.03$ ISCO (innermost stable circular orbit) assuming a dimensionless spin parameter $a_{*}=cJ/GM^{2}=0.0$, and $R_{in}=1.08\pm0.06$ ISCO for $a_{*}=0.3$ (errors quoted at 1 $\sig…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]FOS: Physical sciencesAstrophysics01 natural sciencesstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesaccretion accretion disks stars: neutron X-rays: binaries X-rays: individual: 4U 1636-53 GX 17+2 4U 1705-44010303 astronomy & astrophysicsLine (formation)Spin-½PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsEquation of state (cosmology)neutron X-rays: binaries X-rays: individual: 4U 1636-53 GX 17+2 4U 1705-44 [accretion accretion disks stars]accretion disksAstronomy and AstrophysicsRadiusNeutron starReflection (mathematics)Space and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-rays: individualDimensionless quantity
researchProduct

Constraining the p -Mode– g -Mode Tidal Instability with GW170817

2019

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=…

Physics010308 nuclear & particles physicsGravitational waveGeneral Physics and AstronomyBreaking wave7. Clean energy01 natural sciencesInstabilityComputational physicsNeutron starStarsAmplitude13. Climate action0103 physical sciencesWaveformExtreme value theory010303 astronomy & astrophysicsPhysical Review Letters
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct

Fe Kα and Hydrodynamic Loop Model Diagnostics for a Large Flare on II Pegasi

2008

The observation by the Swift X-ray Telescope of the Fe K alpha_1, alpha_2 doublet during a large flare on the RS CVn binary system II Peg represents one of only two firm detections to date of photospheric Fe K alpha from a star other than our Sun. We present models of the Fe K alpha equivalent widths reported in the literature for the II Peg observations and show that they are most probably due to fluorescence following inner shell photoionisation of quasi-neutral Fe by the flare X-rays. Our models constrain the maximum height of flare the to 0.15 R_* assuming solar abundances for the photospheric material, and 0.1 R_* and 0.06 R_* assuming depleted photospheric abundances ([M/H]=-0.2 and […

PhysicsAstronomy and AstrophysicsAstrophysicslaw.inventionLuminosityLoop (topology)TelescopeSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary SciencelawPEG ratioK-alphaHydrodynamics Plasmas Stars: Coronae X-Rays: StarsBinary systemPlasma densityFlareThe Astrophysical Journal
researchProduct

GW170817: Measurements of Neutron Star Radii and Equation of State

2018

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESGW170817BINARIESddc:550DENSELIGODENSE MATTEREquation of State010303 astronomy & astrophysicsQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsNeutron Star RadiusPhysicsGravitational effectsEquations of stateParametrizationsElectromagnetic observationsGravitational-wave signals3. Good healthQUADRUPOLE-MOMENTSMacroscopic propertiesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEquations of state of nuclear matterGravitational wavesaturation: densityBinary neutron starsNUCLEON MATTEREquations of state of nuclear matter; Gravitational wave sources; Gravitational waves; Nuclear matter in neutron starsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaGW170817 Neutron Star Radius Equation of StatePhysics Multidisciplinaryneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionGravitation and AstrophysicsNuclear matter in neutron starsGravitational waveselectromagnetic field: productionPhysics and Astronomy (all)Pulsargalaxy: binary0103 physical sciencesddc:530NeutronMASSESSTFCequation of state: parametrizationAstrophysics::Galaxy AstrophysicsNeutronsExtreme conditionsGravitational wave sourcesEquation of stateScience & TechnologyNeutron Star Interior Composition Explorer010308 nuclear & particles physicsGravitational wavegravitational radiationRCUKFlocculationSaturation densityUNIVERSAL RELATIONSStarsLIGOgravitational radiation detectorNeutron starStarsVIRGOPhysics and Astronomygravitational radiation: emissionneutron star: binary: coalescenceDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]MATTER
researchProduct