0000000000144581

AUTHOR

José A. Padrón-hidalgo

Kernel Anomalous Change Detection for Remote Sensing Imagery

Anomalous change detection (ACD) is an important problem in remote sensing image processing. Detecting not only pervasive but also anomalous or extreme changes has many applications for which methodologies are available. This paper introduces a nonlinear extension of a full family of anomalous change detectors. In particular, we focus on algorithms that utilize Gaussian and elliptically contoured (EC) distribution and extend them to their nonlinear counterparts based on the theory of reproducing kernels' Hilbert space. We illustrate the performance of the kernel methods introduced in both pervasive and ACD problems with real and simulated changes in multispectral and hyperspectral imagery w…

research product

Unsupervised Anomaly and Change Detection With Multivariate Gaussianization

Anomaly detection (AD) is a field of intense research in remote sensing (RS) image processing. Identifying low probability events in RS images is a challenging problem given the high dimensionality of the data, especially when no (or little) information about the anomaly is available a priori. While a plenty of methods are available, the vast majority of them do not scale well to large datasets and require the choice of some (very often critical) hyperparameters. Therefore, unsupervised and computationally efficient detection methods become strictly necessary, especially now with the data deluge problem. In this article, we propose an unsupervised method for detecting anomalies and changes …

research product

Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection

Detecting anomalous changes in remote sensing images is a challenging problem, where many approaches and techniques have been presented so far. We rely on the standard field of multivariate statistics of diagnostic measures, which are concerned about the characterization of distributions, detection of anomalies, extreme events, and changes. One useful tool to detect multivariate anomalies is the celebrated Cook's distance. Instead of assuming a linear relationship, we present a novel kernelized version of the Cook's distance to address anomalous change detection in remote sensing images. Due to the large computational burden involved in the direct kernelization, and the lack of out-…

research product