0000000000146090

AUTHOR

Hervé Maillotte

showing 17 related works from this author

Demonstration of polarization pulling in a fiber-optical parametric amplifier

2012

International audience; We report the experimental demonstration of all-optical polarization pulling of an initially polarization-scrambled signal using a fiber-optical parametric amplifier. Nonlinear polarization pulling has been achieved for both the signal and idler with 25 dB gain.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicPhysics::Optics02 engineering and technology01 natural sciences010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticsBrillouin scattering0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectronic engineeringA fibersPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear polarizationPolarization (waves)Optical parametric amplifiersymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicParametric oscillatorbusinessRaman scattering
researchProduct

Tunable source of infrared pulses in gas-filled hollow core capillary

2020

International audience; We report a tunable source that generates pulses in the infrared from an optical parametric amplification in a gas-filled hollow core capillary based on four-wave mixing process, in which the phase matching strongly depends on the gas pressure and the pump. In our case, we have generated pulses from 1 to 1.6 m in the sub-µJ level together with a parametric amplification in the visible.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials science[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicCapillary actionInfrared[SPI] Engineering Sciences [physics]Mixing (process engineering)Physics::Optics02 engineering and technology01 natural sciences010309 optics[SPI]Engineering Sciences [physics]0103 physical sciencesSelf-phase modulationComputingMilieux_MISCELLANEOUSParametric statistics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry021001 nanoscience & nanotechnologyOptical parametric amplifier[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics0210 nano-technologybusinessPhotonic-crystal fiberVisible spectrum
researchProduct

Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber

1999

International audience; We present a set of experimental observations that demonstrate the generation of vector trains of dark-soliton pulses in the orthogonal axes of a highly birefringent optical fiber. We generated dark-soliton trains with terahertz repetition rate in the normal group-velocity dispersion regime by inducing a polarization modulational instability by mixing two intense, orthogonal continuous laser beams. Numerical solutions of the propagation equations were used to optimize the emission of vector dark pulses at the fiber output.

PhysicsOptical fiberBirefringence[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industryTerahertz radiationOptical communicationPhysics::OpticsStatistical and Nonlinear PhysicsPolarization (waves)01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticsModulational instabilityOpticsOrthogonal coordinateslaw0103 physical sciences[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / Photonic010306 general physicsbusinessLaser beams
researchProduct

High efficiency frequency doubling in fully diced LiNbO3ridge waveguides on silicon

2016

Nonlinear periodically poled ridge LiNbO3 waveguides have been fabricated on silicon substrates. Components are carved with only the use of a precision dicing machine without the need for grinding or polishing steps. They show efficient second harmonic generation at telecommunication wavelengths with normalized conversion reaching 204%/W in a 15 mm long device. The influence of the geometrical non uniformities of waveguides due to fabrication processes is asserted. Characteristics of the components are studied; notably their robustness and tunability versus temperature.

FabricationMaterials scienceSiliconbusiness.industrychemistry.chemical_elementSecond-harmonic generationPolishing02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsGrinding010309 opticsWavelengthOpticschemistryRobustness (computer science)0103 physical sciencesWafer dicing0210 nano-technologybusinessJournal of Optics
researchProduct

Demonstration of Stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration

1999

International audience; We analyze the stimulated-Raman-scattering-(SRS) process induced by a linearly polarized multifrequency pump field in a normally dispersive single-mode fiber. We show, by theoretical analysis and numerical simulations, that the SRS process may be either controlled by switching all the generated Stokes radiations to the lowest-frequency pump or suppressed for all the frequency components of the pump field. The suppression process is achieved by an appropriate choice of the frequency separation between the pumps and a particular power distribution among the frequency components of the pump field. We present experimental spectra showing the effectiveness of this suppres…

Optical fiberMaterials scienceField (physics)[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicPhysics::Optics02 engineering and technology01 natural scienceslaw.invention010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticslawFrequency separation0103 physical sciences0202 electrical engineering electronic engineering information engineeringSelf-phase modulationbusiness.industryLinear polarizationCross-phase modulationNonlinear opticsStatistical and Nonlinear PhysicsAtomic and Molecular Physics and Opticssymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessRaman scattering
researchProduct

Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping

1999

International audience; We present a method for suppressing the stimulated Raman scattering process induced by a multifrequency pump field propagating in a normally dispersive single-mode fibre. The suppression process is completely achieved by suitably choosing the frequency separation between the pumps, as well as the power distribution among the frequency components of the pump field. The experimental spectra show the effectiveness of this suppression process for a dual-frequency pumping configuration.

Materials scienceOptical fiber[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicField (physics)Wave propagationPhysics::Optics02 engineering and technology01 natural sciencesSpectral linelaw.invention010309 opticssymbols.namesakeOpticslawFrequency separation0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringPhysical and Theoretical Chemistrybusiness.industry020208 electrical & electronic engineeringSingle-mode optical fiberNonlinear opticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessRaman scattering
researchProduct

A Brillouin fiber laser at 2 µm based on a step-index tellurite (TeO2) optical fiber

2019

International audience; We demonstrate Brillouin lasing at 2-µm using a step-index Tellurite-glass optical fiber in a passive fiber ring cavity. A low lasing threshold of 70 mW was achieved with a Brillouin gain of 1.05 × 10-10 m/W for a Brillouin frequency shift of 6.165 GHz. Stimulated Brillouin scattering (SBS) in optical fibers is a nonlinear process with important applications such as distributed optical fiber sensing, microwave photonics, optical storage, and fiber lasers. The latter application has attracted significant interest as highly coherent laser sources with sub-Hz linewidth can be achieved using SBS in optical cavities. To date, most of Brillouin fibers lasers (BFLs) have be…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Physics::Optics
researchProduct

Wavelength conversion from 1.3 µm to 1.5 µm in single-mode optical fibres using Raman-assisted three-wave mixing

2000

International audience; We theoretically analyse the achievement of wide-range all-optical wavelength conversion of a 1.31 µm signal to an idler wave in the 1.5 µm spectral region by Raman-assisted three-wave mixing in single-mode optical fibres. Raman-assisted three-wave mixing allows efficient conversion on a large frequency detuning bandwidth while alleviating the need for stringent phase-matching conditions.

Materials scienceOptical fiber[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industryBandwidth (signal processing)Single-mode optical fiberPhysics::Optics02 engineering and technologyWavelength conversion01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessRaman spectroscopy
researchProduct

Demonstration of polarization pulling using a fiber-optic parametric amplifier

2012

International audience; We report the observation of all-optical polarization pulling of an initially polarization-scrambled signal using parametric amplification in a highly nonlinear optical fiber. Broadband polarization pulling has been achieved both for the signal and idler waves with up to 25 dB gain using the strong polarization sensitivity of parametric amplifiers. We further derive the probability distribution function for the final polarization state, assuming a randomly polarized initial state, and we show that it agrees well with the experiments.

Optical fiberIMPACTPhysics::OpticsPolarization-maintaining optical fiberATTRACTION02 engineering and technologyOPTICAL-FIBER01 natural sciencesSTIMULATED BRILLOUIN-SCATTERINGlaw.invention010309 optics020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiber Optic TechnologyComputer SimulationOptical FibersParametric statisticsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Polarization rotator[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Amplifiers Electronicbusiness.industryAmplifierEquipment DesignPolarization (waves)Optical parametric amplifierAtomic and Molecular Physics and OpticsNonlinear Dynamics[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicComputer-Aided Design[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicParametric oscillatorbusiness
researchProduct

Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion

2001

International audience; We analyse theoretically and experimentally the Raman-assisted parametric coupling between non-phase-matched waves propagating in normally dispersive single-mode fibres. We perform a careful analysis of the wave-coupling behaviour, which shows that scalar and vector three-wave mixing (TWM) interactions induce a relatively small periodic power flow between a central-frequency pump at frequency ω0 and a pair of up-shifted (anti-Stokes) and down-shifted (Stokes) sidebands at frequencies View the MathML source and View the MathML source, respectively. For sufficiently high pump powers, the stimulated Raman scattering enters into play, causing a unilateral transfer of ene…

Raman amplification[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicPhase (waves)02 engineering and technology7. Clean energy01 natural sciences010309 opticssymbols.namesake020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringPhysical and Theoretical ChemistryMixing (physics)Parametric statisticsPhysicsbusiness.industryNonlinear opticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicbusinessRaman spectroscopyRaman scatteringCoherence (physics)
researchProduct

Four-wave mixing process induced by a self-phase modulated pulse in a hollow core capillary

2021

International audience; <span class="markedContent" id="page11R_mcid8"&gt<span style="left: 247.583px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif;" role="presentation" dir="ltr"&gt</span&gt<span style="left: 253px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif; transform: scaleX(0.941702);" role="presentation" dir="ltr"&gtIn this work, we investigate the modal </span&gt<span style="left: 518.183px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif;" role="presentation" dir="ltr"&gt </span&gt<span style="left: 519.8px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif; transform: scaleX(0.958087);" role="presentation" dir="ltr"&gtfour wa…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceArgonbusiness.industry[SPI] Engineering Sciences [physics]Phase (waves)chemistry.chemical_elementPhysics::Optics01 natural sciencesPulse (physics)010309 opticsWavelengthFour-wave mixing[SPI]Engineering Sciences [physics]Opticschemistry0103 physical sciences010306 general physicsbusinessSelf-phase modulationMixing (physics)Doppler broadening
researchProduct

Peignes de fréquences générées par effet Kerr en cavité laser Brillouin autour de 1.55 µm et 2 µm

2019

International audience; Nous reportons la génération de peignes de fréquences optiques par effet hybride Brillouin/Kerr dans une cavité laserà fibre optique. Ces peignes, opérantà 1,55 µm et 2 µm, sont accor-dables avec des taux de répétitions allant jusqu'à plusieurs centaines de GHz. Ils pourraient trouver un intérêt applicatif notamment en spectroscopie moléculaire.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS]Physics [physics]/Physics [physics][PHYS.PHYS] Physics [physics]/Physics [physics]
researchProduct

Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber

1999

International audience; We demonstrate efficient frequency conversion with large frequency shifts of an anti-Stokes signal into a parametrically seeded Stokes idler, which is generated by a highly mismatched three-wave mixing interaction and subsequent Raman amplification in a normally dispersive single-mode fiber. The use of non-phase-matched waves in Raman-assisted three-wave mixing interactions overcomes the strict spectral limitations imposed by phase-matching conditions in parametric frequency-conversion processes.

Materials scienceRaman amplification[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industrySingle-mode optical fiberNonlinear optics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and Optics010309 opticssymbols.namesake020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicRaman spectroscopybusinessSelf-phase modulationRaman scatteringMixing (physics)Parametric statistics
researchProduct

Optical parametric amplification in gas-filled hollow-core capillary for the generation of tunable pulses in the infrared

2020

International audience; Ultrashort pulses in the near-infrared (NIR) to mid-infrared (MIR) are widely used for laser matter interaction experiments, e.g. the relaxation process of carrier semiconductors and chemical dynamics at the femtosecond and attosecond time scale [1, 2]. Many different approaches based on nonlinear processes or laser devices can be found to generate pulses in theses spectral ranges. Recently, four wave mixing (FWM) based parametric amplification in gas-filled hollow core capillary (HCC) has been used to create a tunable source of ultrashort pulses. For example, pulses can be generated in the visible with an energy at the 10 µJ level [4] and in the near infrared at ~1.…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
researchProduct

Stimulated Brillouin scattering in Germanium-doped-core optical fibers up to 98% mol doping level

2018

International audience; We experimentally investigate stimulated Brillouin scattering in several highly GeO2-doped optical fibers and report wide frequency tunability over more than 3 GHz and Brillouin gain 7 times larger than in standard silica fibers.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials sciencePhysics::Opticschemistry.chemical_elementGermanium02 engineering and technologyBrillouin gain01 natural scienceslaw.invention010309 opticsCondensed Matter::Materials Science020210 optoelectronics & photonicsBrillouin scatteringlawCondensed Matter::Superconductivity0103 physical sciences0202 electrical engineering electronic engineering information engineeringCondensed Matter::Quantum Gases[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryDopingCore (optical fiber)chemistryOptoelectronicsCondensed Matter::Strongly Correlated Electronsbusiness
researchProduct

Amplification paramétrique d'impulsion ultra-courte dans les fibres optiques

2015

International audience;

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
researchProduct

Information processing systems

2016

International audience;

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
researchProduct