0000000000146882

AUTHOR

Lela Gorgishvili

From Layered Molybdic Acid to Lower-Dimensional Nanostructures by Intercalation of Amines under Ambient Conditions

Nanostructures of varied dimensionality such as rods, scrolls, and disks of molybdenum oxide have been synthesized in gram quantities under ambient conditions using exfoliation of the layers as a synthetic tool. Intercalation of alkylamines (CnH2n+2NH2, where n = 3, 4, 8, 12, and 16) into yellow molybdic acid (MoO3·2H2O) and subsequent treatment with nitric acid resulted in molybdenum oxide nanorods, nanodisks, or oxide−amine composite nanorods. The sizes of the nanoparticles range from a few nanometers to micrometers in length and 10 to 200 nm in diameter. Detailed X-ray, scanning electron microscopy, and transmission electron microscopy analyses reveal an inverse relation between the size…

research product

ChemInform Abstract: Facile Synthesis and Characterization of Monocrystalline Cubic ZrO2Nanoparticles.

Abstract Crystalline ZrO2 nanoparticles were prepared from zirconium isopropoxide by slow hydrolysis and subsequent hydrothermal treatment of solutions containing various amounts of sodium hydroxide at 180 °C. Whereas moderately basic solutions lead to the formation of nanoparticles of monoclinic ZrO2 with plate-like morphology, and nanoparticles of the cubic ZrO2 high-temperature polymorph with diameters of approx. 5 nm were obtained from strongly basic solutions. The morphology, structure and properties of as-synthesized nanoparticles were characterized using HRTEM, XRD, Raman spectroscopy, UV–vis, PL spectroscopy and BET measurements. The formation of both, the monoclinic and the cubic p…

research product

Facile synthesis and characterization of monocrystalline cubic ZrO2 nanoparticles

Abstract Crystalline ZrO2 nanoparticles were prepared from zirconium isopropoxide by slow hydrolysis and subsequent hydrothermal treatment of solutions containing various amounts of sodium hydroxide at 180 °C. Whereas moderately basic solutions lead to the formation of nanoparticles of monoclinic ZrO2 with plate-like morphology, and nanoparticles of the cubic ZrO2 high-temperature polymorph with diameters of approx. 5 nm were obtained from strongly basic solutions. The morphology, structure and properties of as-synthesized nanoparticles were characterized using HRTEM, XRD, Raman spectroscopy, UV–vis, PL spectroscopy and BET measurements. The formation of both, the monoclinic and the cubic p…

research product