6533b7d1fe1ef96bd125caa5
RESEARCH PRODUCT
From Layered Molybdic Acid to Lower-Dimensional Nanostructures by Intercalation of Amines under Ambient Conditions
Ute KolbGunnar GlasserLela GorgishviliHelen Annal ThereseWolfgang TremelMohammed Ibrahim Shukoorsubject
Thermogravimetric analysisMaterials scienceScanning electron microscopeGeneral Chemical EngineeringIntercalation (chemistry)Inorganic chemistryNanoparticleGeneral ChemistryExfoliation jointMolybdic acidchemistry.chemical_compoundchemistryTransmission electron microscopyMaterials ChemistryNanoroddescription
Nanostructures of varied dimensionality such as rods, scrolls, and disks of molybdenum oxide have been synthesized in gram quantities under ambient conditions using exfoliation of the layers as a synthetic tool. Intercalation of alkylamines (CnH2n+2NH2, where n = 3, 4, 8, 12, and 16) into yellow molybdic acid (MoO3·2H2O) and subsequent treatment with nitric acid resulted in molybdenum oxide nanorods, nanodisks, or oxide−amine composite nanorods. The sizes of the nanoparticles range from a few nanometers to micrometers in length and 10 to 200 nm in diameter. Detailed X-ray, scanning electron microscopy, and transmission electron microscopy analyses reveal an inverse relation between the size of the nanoparticles and the chain length of the guest molecules. Infrared and thermogravimetric studies throw light on the driving force for the amine intercalation and the orientation of the intercalated amine molecules.
year | journal | country | edition | language |
---|---|---|---|---|
2006-03-28 | Chemistry of Materials |