0000000000146917

AUTHOR

Antonio Aucejo

Isobaric vapor–liquid equilibrium for binary mixtures of 1-hexene+n-hexane and cyclohexane+cyclohexene at 30, 60 and 101.3kPa

Abstract Consistent vapor–liquid equilibria (VLE) data were determined for the binary systems 1-hexene + n-hexane and cyclohexane + cyclohexene at 30, 60 and 101.3 kPa, with the purpose of studying the influence of the pressure in the separation of these binary mixtures. The two systems show a small positive deviation from ideality and do not present an azeotrope. VLE data for the binary systems have been correlated by the Wilson, UNIQUAC and NRTL equations with good results and have been predicted by the UNIFAC group contribution method.

research product

Isobaric vapor–liquid equilibrium for ternary mixtures of ethanol and methylcyclohexane with 3-methylpentane and tert-butyl alcohol at 101.3kPa

Abstract Consistent vapor–liquid equilibrium (VLE) data for the ternary systems 3-methylpentane + ethanol + methylcyclohexane and ethanol + tert-butyl alcohol (TBA) + methylcyclohexane are reported at 101.3 kPa. The VLE data have been correlated by Wilson, UNIQUAC and NRTL equations. The ternary systems do not present azeotrope and are well predicted from binary interaction parameters.

research product

Phase Equilibria in the Binary and Ternary Systems Composed of Diethyl Ketone, 2-Pentanone, and 3-Pentanol at 101.3 kPa

New vapor−liquid equilibrium data for the binary systems diethyl ketone + 2-pentanone, diethyl ketone + 3-pentanol and 2-pentanone + 3-pentanol and for the diethyl ketone + 2-pentanone + 3-pentanol ternary system are reported at 101.3 kPa. The data were found to be thermodynamically consistent according to the Van Ness−Byer−Gibbs method for the binary systems and according to the McDermott−Ellis method for the ternary one. The experimental results show that the diethyl ketone + 2-pentanone system is well represented by assuming ideal behavior. The other binary systems exhibit slight positive deviations from ideality, and no azeotrope is present. The VLE data have been correlated with the Wi…

research product

Phase equilibria and multiple azeotropy in the associating system methanol + diethylamine

Vapor−liquid equilibrium has been measured for the binary system of methanol (1) + diethylamine (2) at 101.3 and 300 kPa. Both equilibrium isobars show strong deviations from ideal behavior and a single maximum boiling point azeotrope of practically constant composition x1 ≈ 0.76, corresponding to a temperature of 339.8 K at 101.3 kPa and 370.0 K at 300 kPa. The trend of the high-pressure isobar data is consistent with the formation of a second minimum boiling azeotrope, confirming the multiple azeotropic behavior found by others at a higher temperature (398.58 K). Furthermore, the excess Gibbs energy is negative and inflects markedly with composition with increased pressure. The equilibriu…

research product

Isobaric Vapor−Liquid Equilibria for the Binary Mixtures of Styrene with Ethylbenzene, o-Xylene, m-Xylene, and p-Xylene

Consistent vapor−liquid equilibria (VLE) data have been determined at (5 and 15) kPa for the binary systems styrene + ethylbenzene, + o-xylene, + m-xylene, and + p-xylene in the temperature range (324 to 359) K. The binary systems exhibit very slight deviations from ideal behavior, and no azeotrope is present. The VLE data were well-correlated by the Wilson, NRTL, and UNIQUAC equations.

research product

Isobaric vapor–liquid equilibrium for binary and ternary mixtures of ethanol+2-methyl-2-propanol and 2-methylpentane+ethanol+2-methyl-2-propanol

Abstract Consistent vapor–liquid equilibrium data for the binary and ternary systems ethanol+2-methyl-2-propanol (TBA) and 2-methylpentane+ethanol+TBA are reported at 101.3 kPa. In the binary system, the results indicate a negative deviation from ideality and no azeotrope is present. The ternary system shows negative and positive deviations from ideality, does not present azeotrope, and is well predicted from binary data. The activity coefficients and boiling points of the solutions were correlated with its composition by Wilson, UNIQUAC and NRTL equations.

research product

Effect of pH, cation concentration and sorbent concentration on cadmium and copper removal by a granular activated carbon

The single adsorption of cadmium and copper from aqueous solutions has been investigated on Darco 12-20 mesh granular activated carbon for a wide range of experimental conditions: pH, metal concentration and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removal increases on raising pH and carbon concentration, and decreases on raising the initial metal concentration. The adsorption processes have been modelled using the surface complex formation (SCF) Triple Layer Model (TLM) with a single surface bidentate species or with an overall surface species with fractional stoichiometry. Bidentate stoichiometry considering pH, meta…

research product

Densities, Viscosities, and Refractive Indices of Some Binary Liquid Systems of Methanol + Isomers of Hexanol at 298.15 K

Viscosities, densities, and refractive indices of eight binary liquid systems containing ethanol + some isomers of hexanol have been determined at 298.15 K. The excess property values were fitted to the Redlich-Kister equation to estimate the binary coefficients and the standard deviations.

research product

Diagnosis of boron, fluorine, lead, nickel and zinc toxicity in citrus plantations in Villarreal, Spain

In the late 1980s, citrus plantations in the area of Villarreal (Spain) showed injuries similar to those previously reported for boron and fluorine toxicity. The area was affected by the disposal of industrial wastewater, mainly from ceramic industries. Conjunctive uses of surface water, groundwater and wastewater for irrigation had taken place. A survey was conducted at 25 orchards to assess leaves and soil for their boron, fluorine, lead, nickel and zinc contents. Wastewater and groundwater were also analyzed to corroborate the presence of these pollutants. The results showed that both boron and fluorine contents were greater than those reported as excess at the most part of the orchards …

research product

Isobaric vapor–liquid equilibrium for binary and ternary mixtures of 2-methyl-2-propanol+methyl 1,1-dimethylpropyl ether+2,2,4-trimethylpentane

Abstract New consistent vapor–liquid equilibrium (VLE) data for the binary system methyl 1,1-dimethylpropyl ether (TAME)+2,2,4-trimethylpentane (isooctane) and the ternary system 2-methyl-2-propanol (TBA)+methyl 1,1-dimethylpropyl ether (TAME)+2,2,4-trimethylpentane (isooctane) are reported at 101.3 kPa. In the binary system, the results indicate a positive deviation from ideality and no azeotrope is present. The ternary system presents a saddle point azeotrope that can be predicted from binary data. The activity coefficients and boiling points of the solutions were correlated with their composition by Wilson, UNIQUAC and NRTL equations.

research product

Viscosity of n-alcohol binary mixtures

In this paper liquid mixture viscosities at 25 °C for 18 binary systems formed by primary n-alcohols have been measured. These values were fitted to Topological Treatment of Mixtures (T.T.M.) The pure compound topological description is obtained following the DARC system rules. A weighting function was introduced to obtain the topological description of a mixture. The results obtained with this model agree with experimental data (average deviation less than 2% in all cases). Dans cette etude, nous avons mesure des viscosites de melanges liquides a 25°C pour dix-huit systemes binaires formes par des n-alcools primaires. Ces valeurs ont ete calees par le traitement topologique des melanges (T…

research product

Hydrocracking ofn-heptane with a NiO-MoO3/HYUS zeolite as catalyst. Kinetic study

The hydrocracking of n-heptane has been carried out in a fixed bed reactor at 2.45 MPa pressure and with a H2/n-heptane molar ratio of 5.0 using a 4 wt% NiO - 8 wt% MO3/HYUS zeolite as a catalyst. The W/F10 ratio was varied between 75.3 and 1624 kg · s/kmol at different reaction temperatures: 573, 588, 603 and 623 K. The kinetics of the reaction has been studied by two different procedures due to the slight deactivation of the catalyst. One of them uses the conversion and yield values extrapolated at time on stream to zero and the other uses a kinetic equation where the deactivation of the catalyst has been included. The experimental data were fit well by a pseudo-first order kinetic equati…

research product

Isobaric vapor–liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol

Abstract Vapor–liquid equilibrium (VLE) data for the binary systems, 2-methylpentane+ethanol and 2-methylpentane+2-methyl-2-propanol (TBA), are reported at 101.3 kPa, including pure component vapor pressures. The systems deviate remarkably from ideal behaviour presenting one positive azeotrope. The activity coefficients and boiling points of the solutions were correlated with its composition by Wilson, UNIQUAC, NRTL, and Wisniak–Tamir equations.

research product

Vapor–liquid equilibria in the systems 3-methylpentane+methyl 1,1-dimethylethyl ether and 3-methylpentane+methyl 1,1-dimethylpropyl ether at 101.3 kPa

Abstract Pure-component vapor pressure of 3-methylpentane and vapor–liquid equilibrium (VLE) for the binary systems of 3-methylpentane with methyl 1,1-dimethylethyl ether (MTBE) and with methyl 1,1-dimethylpropyl ether (TAME) at 101.3 kPa have been measured. Both systems exhibit small positive deviations from ideality. They can be described as regular solutions and do not present azeotrope. The activity coefficients and boiling points of the solutions were correlated with its composition by Wilson, UNIQUAC, NRTL, and Wisniak–Tamir equations.

research product

Phase equilibria in the systems 3-methylpentane + methylcyclohexane, diisopropyl ether + methylcyclohexane and 3-methylpentane + diisopropyl ether + methylcyclohexane at 101.3 kPa

Abstract Consistent vapor–liquid equilibria (VLE) at 101.3 kPa has been determined for the ternary system 3-methylpentane+diisopropyl ether (DIPE)+methylcyclohexane and the binary subsystems 3-methylpentane+methylcyclohexane and DIPE+methylcyclohexane in the temperature range from 336 to 374 K. According to the experimental results, the systems exhibit slight positive deviation from ideal behavior and no azeotrope is present. The VLE data have been correlated with the composition using the Wilson, UNIQUAC and NRTL relations. These models allow good prediction of the VLE properties of the ternary system from those of the pertinent binary subsystems.

research product

Phase Equilibria in the Systems 2-Methyl-2-propanol + Methyl 1,1-Dimethylpropyl Ether and 2-Methylpentane + 2-Methyl-2-propanol + Methyl 1,1-Dimethylpropyl Ether

Consistent vapor−liquid equilibrium data for the binary and ternary systems 2-methyl-2-propanol (TBA) + methyl 1,1-dimethylpropyl ether (TAME) at temperatures from 353 to 359 K and 2-methylpentane + 2-methyl-2-propanol (TBA) + methyl 1,1-dimethylpropyl ether (TAME) from 332 to 353 K are reported at 101.3 kPa. The results indicate that the systems deviate positively from ideality and that only the binary system presents an azeotrope. The ternary system is well predicted from binary data. The activity coefficients and boiling points of the solutions were correlated with composition by Wilson, UNIQUAC, NRTL, and Wisniak−Tamir equations.

research product