0000000000146969

AUTHOR

Birger Lange

Cover Picture: Macromol. Rapid Commun. 20/2006

research product

Creating Defined 3-D Defects Inside an Opaline Ormocer® Matrix with Two-Photon Lithography

The creation of defined structures inside a synthetic opal is a key step toward applications in optics, where control of the propagation of light inside a photonic crystal is necessary. In a previous paper, we described the nanostructuring of Ormocer® to form inverse opals (Lange et al., Macromol. Rapid Commun. 2006, 27, 1746). Here, we report an application for this robust replica process in which defects can be directly produced within the PC by two-photon lithography. The holes of an inverse opal structure are first filled with a resin of similar refractive index. In this transparent material, polymerization can be initiated at defined places via two-photon lithography. After removal of …

research product

Functional Polymer-Opals from Core-Shell Colloids

Colloidal photonic crystals were prepared from monodisperse core-shell particles. The shell is hereby formed from a functional monomer, such as glycidylmethacrylate or different reactive ester monomers, which can perform chemical reactions and the core from a standard monomer, which yields highly monodisperse colloids. It was possible to crystallize the core-shell particles into artificial opals with excellent optical properties. Reactions on the functional surface of the colloids were carried out, which lead to a dramatic rise in the mechanical stability or to a functionalization of His-tagged silicatein, which acts as nanoreactor to synthesize and immobilize gold nanoparticles from auric …

research product

3D defect engineering in polymer opals

The possibility to create defined structures inside a synthetic opal is a key step towards applications in optics, where control of the propagation of light inside a photonic crystal is necessary. Here we report different methods for realizing defined embedded defects in opaline structures. Monodisperse colloids are synthesized by surfactant free emulsion polymerization of the acid labile monomer t-butyl-methacrylate (tBMA). The PtBMA colloids can be filled with sensitizer and photo acid generator and it is possible to crystallize them into photosensitive polymer opals. One method for the introduction of defects is a multilayer build-up of photo-labile (filled with photo acid generator) and…

research product

Opaline effect pigments by spray induced self‐assembly on porous substrates

Self‐assembling of opaline materials on porous substrates like paper requires a very fast crystallization, which can be realized with highly monodisperse colloids. This opens the possibility of applying effect pigments to such substrates not by spraying the rather large effect pigments themselves, but by spraying their building blocks, which self‐assemble later on. The feasibility of this approach is presented here for monodisperse polymethyl methacrylate (PMMA) spheres. This process tolerates additives used for ink‐jet printing.

research product

Functional 3D Photonic Films from Polymer Beads

This paper describes synthesis and properties of polymer opals with a special emphasis on functional opals. Polymer opals are formed from monodisperse polymer colloids by self-assembly. Their potential applications range from coloring pigments, 3D bicontinuous supports for catalysis to photonic materials. This latter application requires especially the controlled creation of defects and the incorporation of fluorescent materials. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

research product

Functional Opals from Reactive Polymers: Complex Structures, Sensors, and Modified Photoluminescence

This paper describes the synthesis and properties of functional opal structures, so-called colloidal photonic crystals (CPCs), from a variety of reactive polymers. Photoprocessable opals are presented as well as opals with incorporated smart defect layers that can be actively addressed by external stimuli. In addition, opals with functional bio-macromolecular defects have been developed. They present a new class of materials for optical biomonitoring through shifts of the induced photonic defect mode. Strong modification of photoluminescence according to the photonic bandstructure is observed from opals with embedded exclusively luminescent defect layer.

research product

Fabrication of Robust High-Quality ORMOCER® Inverse Opals

The nanostructuring of ORMOCER® to form inverse opals is described. For this purpose a polymer opal is used as a template and infiltrated with liquid ORMOCER®. After photopolymerization of the resin the host opal is dissolved in tetrahydrofuran and an ORMOCER® inverse opal is obtained. It shows excellent periodicity (by SEM) and optical properties to reveal a high degree of face centered cubic order. This replication process leads to a nanostructured photonic crystal with the outstanding mechanical properties of ORMOCER® and high temperature stability up to 350 °C.

research product

Chemical Approach to Functional Artificial Opals

Artificial opals are self-assembled colloidal crystals, which consist of a cubic dense packing (fcc) of hard (not film-forming) colloids with diameters ranging from 200 to 900 nm. Because of their periodic nanostructure the assemblies are able to reflect light that matches their periodicity, i.e., UV- to IR-radiation depending on the size of the colloids. Thus, they present a subgroup of 'photonic crystals'. While, originally, the chemistry inside the colloids and the resulting opals was of minor significance, nowadays the chemical variation of opals is becoming more and more important for the preparation of functional and patterned opals. The search for functional opals is, therefore, espe…

research product