0000000000147096

AUTHOR

Alan D. Martin

showing 31 related works from this author

Search for muoproduction of X(3872) at COMPASS and indication of a new state X˜(3872)

2018

Abstract We have searched for exclusive production of exotic charmonia in the reaction μ + N → μ + ( J / ψ π + π − ) π ± N ′ using COMPASS data collected with incoming muons of 160 GeV/c and 200 GeV/c momentum. In the J / ψ π + π − mass distribution we observe a signal with a statistical significance of 4.1 σ. Its mass and width are consistent with those of the X ( 3872 ) . The shape of the π + π − mass distribution from the observed decay into J / ψ π + π − shows disagreement with previous observations for X ( 3872 ) . The observed signal may be interpreted as a possible evidence of a new charmonium state. It could be associated with a neutral partner of X ( 3872 ) with C = − 1 predicted b…

PhysicsNuclear and High Energy PhysicsMuonMass distribution010308 nuclear & particles physicsBranching fractionHadronState (functional analysis)01 natural sciencesMomentum0103 physical sciencesTetraquarkAtomic physics010306 general physicsX(3872)Physics Letters B
researchProduct

Search for exclusive photoproduction ofZc±(3900) at COMPASS

2015

A search for the exclusive production of the Z(c)(+/-)(3900) hadron by virtual photons has been performed in the channel Z(c)(+/-)(3900). J/Psi pi(+/-). The data cover the range from 7GeV to 19GeV in the centre-of- mass energy of the photon-nucleon system. The full set of the COMPASS data set collected with a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Z(c)(+/-)(3900)-> J/Psi pi(+/-)) x sigma(gamma N) -> Z(c)(+/-)(3900) N/sigma gamma N -> J/Psi N 3.7 x10(-3) has been established at the confidence level of90%. (C) 2015 The Authors. Published by Elsevier B.V.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonCompassHadronAnalytical chemistrySigmaHigh Energy Physics::ExperimentProduction (computer science)TetraquarkZc(3900)Range (computer programming)Physics Letters B
researchProduct

Polarised quark distributions in the nucleon from semi-inclusive spin asymmetries

1998

We present a measurement of semi-inclusive spin asymmetries for positively and negatively charged hadrons from deep inelastic scattering of polarised muons on polarised protons and deuterons in the range $0.003$1 GeV$^2$. Compared to our previous publication on this subject, with the new data the statistical errors have been reduced by nearly a factor of two. From these asymmetries and our inclusive spin asymmetries we determine the polarised quark distributions of valence quarks and non-strange sea quarks at $Q^2$=10 GeV$^2$. The polarised $u$ valence quark distribution, $\Delta u_v(x)$, is positive and the polarisation increases with $x$. The polarised $d$ valence quark distribution, $\De…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsMuonValence (chemistry)SMCHadronFOS: Physical sciencesSMC; SIDIS; Polarized quark distributionsDeep inelastic scatteringSIDISHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)DeuteriumHigh Energy Physics::ExperimentPolarized quark distributionsNucleonParticle Physics - ExperimentPhysics Letters B
researchProduct

Spin asymmetries for events with highpThadrons in DIS and an evaluation of the gluon polarization

2004

We present a measurement of the longitudinal spin cross section asymmetry for deep-inelastic muon-nucleon interactions with two high transverse momentum hadrons in the final state. Two methods of event classification are used to increase the contribution of the photon-gluon fusion process to above 30%. The most effective one, based on a neural network approach, provides the asymmetries A(p)lN(-->)lhhX=0.030+/-0.057(stat)+/-0.010(syst) and A(d)lN(-->)lhhX=0.070+/-0.076(stat)+/-0.010(syst). From these values we derive an averaged gluon polarization DeltaG/G=-0.20+/-0.28(stat)+/-0.10(syst) at an average fraction of nucleon momentum carried by gluons =0.07.

PhysicsNuclear and High Energy PhysicsParticle physicsMeson production010308 nuclear & particles physicsmedia_common.quotation_subjectHadronDeep inelastic scatteringPolarization (waves)01 natural sciencesAsymmetryGluonNuclear physics0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNuclear Experiment010306 general physicsNucleonmedia_commonPhysical Review D
researchProduct

A line-shape analysis for spin-1 NMR signals

1997

An analytic model of the deuteron absorption function has been developed and is compared to experimental NMR signals of deuterated butanol obtained at the SMC experiment in order to determine the deuteron polarization. The absorption function model includes dipolar broadening and a frequency-dependent treatment of the intensity factors. The high-precision TE signal data available are used to adjust the model for Q-meter distortions and dispersion effects. Once the Q-meter adjustment is made, the enhanced polarizations determined by the asymmetry and TE-calibration methods compare well within the accuracy of each method. In analyzing the NMR signals, the quadrupolar coupling constants could …

Coupling constantPhysicsdisNuclear and High Energy PhysicsButanolmedia_common.quotation_subjectsmcpolarized targetQ meterdiPolarization (waves)AsymmetryMolecular physicschemistry.chemical_compoundDipoleNuclear magnetic resonanceDeuteriumchemistrysmc; dis; polarized targetDetectors and Experimental TechniquesInstrumentationShape analysis (digital geometry)media_common
researchProduct

Spin alignment and violation of the OZI rule in exclusive ω and ϕ production in pp collisions

2014

Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons…

Particle physicsNuclear and High Energy PhysicsOZI rule testPOLARIZATIONProtonMesonPROTON-PROTON COLLISIONS; LOW-ENERGY PHOTOPRODUCTION; ZWEIG-IIZUKA RULE; MESON PRODUCTION; EXPERIMENTAL TESTS; SELECTION RULE; POLARIZATION; NUCLEON; PIONIsoscalarPROTON-PROTON COLLISIONSMESON PRODUCTIONNuclear TheoryEXPERIMENTAL TESTS530OZI ruleHigh Energy Physics - ExperimentNuclear physicstestPIONInvariant masslcsh:Nuclear and particle physics. Atomic energy. RadioactivityLOW-ENERGY PHOTOPRODUCTIONVector mesonNuclear ExperimentNUCLEONNuclear ExperimentSpin-½PhysicsHigh Energy Physics::PhenomenologySELECTION RULEBaryonOZI ruleZWEIG-IIZUKA RULElcsh:QC770-798High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

2012

First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication …

Nuclear and High Energy PhysicsParticle physicsCOMPASS; SIDIS; two hadron azimuthal asymmetries; transversityHadronNuclear TheoryFOS: Physical sciencesCOMPASSSIDIS01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences010306 general physicsNuclear ExperimenttransversityPhysicsLarge Hadron ColliderMuonSpectrometerta114010308 nuclear & particles physicsScatteringtwo hadron azimuthal asymmetrietwo hadron azimuthal asymmetriesHigh Energy Physics::PhenomenologyDeep inelastic scatteringPair productionDistribution functionHigh Energy Physics::ExperimentParticle Physics - ExperimentPhysics Letters B
researchProduct

Review of Particle Properties

2002

This biennial Review summarizes much of Particle Physics. Using data from previous editions, plus 2205 new measurements from 667 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. This edition features expanded coverage of CP violation in B mesons and of neutrino oscillations. For the fir…

QuarkPhysicsNuclear and High Energy PhysicsGauge bosonParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadronElementary particleParticle Data GroupFermion01 natural sciencesStandard Model0103 physical sciencesHiggs bosonHigh Energy Physics::Experiment010306 general physicsPhysical Review D
researchProduct

Sivers asymmetry extracted in SIDIS at the hard scales of the Drell-Yan process at COMPASS

2017

Proton transverse-spin azimuthal asymmetries are extracted from the COMPASS 2010 semi-inclusive hadron measurements in deep inelastic muon-nucleon scattering in those four regions of the photon virtuality $Q^2$, which correspond to the four regions of the di-muon mass $\sqrt{Q^2}$ used in the ongoing analysis of the COMPASS Drell-Yan measurements. This allows for a future direct comparison of the nucleon transverse-momentum-dependent parton distribution functions extracted from these two alternative measurements. Various two-dimensional kinematic dependences are presented for the azimuthal asymmetries induced by the Sivers transverse-momentum-dependent parton distribution function. The inte…

Drellâ YanDrell-Yan processPhotonHadronparton: distribution functionDrell-YanPartontransverse momentum dependence01 natural sciencesCOMPASSSIDISHigh Energy Physics - ExperimentSivers functionSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)CompassSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]dimension: 2Nuclear ExperimentSIDIS; Drell–Yan; Spin; Azimuthal asymmetries; Sivers; TMDsmedia_commonPhysicsQuantum chromodynamicsdeep inelastic scattering: semi-inclusive reactionpolarized target: transversephotonDrell–Yan processhep-phlcsh:QC1-999Drell–YanAzimuthal asymmetrieHigh Energy Physics - PhenomenologykinematicsSiverpolarized beam: longitudinalNucleonAzimuthal asymmetriesspin: asymmetryParticle Physics - ExperimentParticle physicsNuclear and High Energy Physicsangular distribution: asymmetrymedia_common.quotation_subjectFOS: Physical sciencesTMDsAsymmetryNuclear physicsSpin[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Azimuthal asymmetries; Drell–Yan; SIDIS; Sivers; Spin; TMDs; Nuclear and High Energy Physics0103 physical sciencesmuon nucleon: deep inelastic scatteringquantum chromodynamicsSiversmuon nucleon: scattering010306 general physicsParticle Physics - Phenomenologynucleon: transverse momentum010308 nuclear & particles physics160 GeV/chep-exCERN SPSmuon+ p: deep inelastic scattering[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentlcsh:Physicsexperimental results
researchProduct

The spin structure functiong1pof the proton and a test of the Bjorken sum rule

2016

New results for the double spin asymmetry A(1)(p) and the proton longitudinal spin structure function g(1)(p) are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g(1)(p)(x) by about a factor of two in the region x less than or similar to 0.02. A next-to-leading order QCD fit to the g(1) world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, Delta Sigma, ranging from 0.26 to 0.36, and to a…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsDeep inelastic scattering01 natural sciencesHelicityNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentSum rule in quantum mechanics010306 general physicsNucleonSpin-½Physics Letters B
researchProduct

Spin asymmetriesA1of the proton and the deuteron in the lowxand lowQ2region from polarized high energy muon scattering

1999

We present the results of the spin asymmetries (Formula presented) of the proton and the deuteron in the kinematic region extending down to (Formula presented) and (Formula presented) The data were taken with a dedicated low x trigger, which required hadron detection in addition to the scattered muon, so as to reduce the background at low x. The results complement our previous measurements and the two sets are consistent in the overlap region. No significant spin effects are found in the newly explored region. © 1999 The American Physical Society.

PhysicsNuclear physicsNuclear and High Energy PhysicsHigh energyParticle physicsMuonDeuteriumProtonScatteringHadronDeep inelastic scatteringSpin-½Physical Review D
researchProduct

Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target

2017

Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x , the relative virtual-photon energy y and the relative hadron energy z . Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target ( 6 LiD). They cover the kinematic domain in the photon virtuality Q2>1(GeV/c)2 , 0.004 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.

QuarkNuclear and High Energy PhysicsPhotonIsoscalarHadronNuclear TheoryHERMEStarget: isoscalar[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesCOMPASSscaling: BjorkenNuclear physicsPionAstronomi astrofysik och kosmologi[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astronomy Astrophysics and CosmologyPion multiplicitiesNuclear Physics - Experiment[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]quantum chromodynamics: perturbation theory010306 general physicsNuclear ExperimentRICHDeep inelastic scattering; Fragmentation functions; Pion multiplicities; Nuclear and High Energy PhysicsPhysicsquark: fragmentation functionMuonpi: multiplicityhep-ex010308 nuclear & particles physicsScatteringmuon: beamhigher-order: 0Fragmentation functionphotonFragmentation functionsDeep inelastic scatteringhadron: energylcsh:QC1-999kinematicsPion multiplicitieHigh Energy Physics::ExperimentParticle Physics - Experimentlcsh:PhysicsDeep inelastic scattering
researchProduct

Transverse extension of partons in the proton probed in the sea-quark range by measuring the DVCS cross section

2019

Physics letters / B B793, 188-194 (2019). doi:10.1016/j.physletb.2019.04.038

Photongeneralized parton distributionmuon: polarizationProtonGeneralized Parton DistributionPartonmeasured [cross section]Proton sizenucl-exmomentum transfer dependence01 natural sciencesCOMPASSSubatomär fysikp: sizeSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentMonte CarloQuantum chromodynamicsPhysicsRange (particle radiation)photon: productionGeneralized Parton DistributionsCOMPASS; Deep inelastic scattering; Deeply virtual Compton scattering; Exclusive reactions; Generalized Parton Distributions; Proton size; Quantum chromodynamicsExclusive reactionlcsh:QC1-999transversebeam [muon]Exclusive reactionsslopesize: (transverse)Particle Physics - ExperimentDeep inelastic scatteringQuarkNuclear and High Energy Physicsexclusive reactionslope: (calculated)liquid: target [hydrogen]photon: mediation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530Nuclear physicshydrogen: liquid: target0103 physical sciencesddc:530Nuclear Physics - Experiment010306 general physicsbeam: polarizationhep-ex010308 nuclear & particles physicsmuon: beam160 GeV/cmuon p --> muon p photonsize [p]Compton scatteringcross section: measuredCERN SPSDeep inelastic scattering[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentDeeply virtual Compton scatteringlcsh:PhysicsQuantum chromodynamicsexperimental results
researchProduct

The COMPASS Setup for Physics with Hadron Beams

2015

The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successful…

Particle physicsCalorimetry; Data acquisition and reconstruction; Fixed target experiment for hadron spectroscopy; Front-end electronics; Micro Pattern detectors and Drift chambers; Monte-Carlo simulation; RICH; Instrumentation; Nuclear and High Energy PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesMonte-Carlo simulation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Calorimetryacquisition and reconstruction01 natural sciences7. Clean energyMicro Pattern detectors and Drift chambersHigh Energy Physics - ExperimentNuclear physicsMomentumHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopy0103 physical sciencesDetectors and Experimental Techniques010306 general physicsRICHInstrumentationFixed target experiment for hadron spectroscopyPhysicsDataLarge Hadron Collider010308 nuclear & particles physicsMicroMegas detectorFront-end electronicsInstrumentation and Detectors (physics.ins-det)Micro Pattern detectorsand Drift chambersData acquisition and reconstructionGas electron multiplierPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)Front-end electronicMicro Pattern detectors and Drift chamber
researchProduct

Spin asymmetry A1d and the spin-dependent structure function g1d of the deuteron at low values of x and Q2

2007

Abstract We present a precise measurement of the deuteron longitudinal spin asymmetry A 1 d and of the deuteron spin-dependent structure function g 1 d at Q 2 1 ( GeV / c ) 2 and 4 × 10 −5 x 2.5 × 10 −2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A 1 d and g 1 d are found to be consistent with zero in the whole range of x.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Large Hadron Collider010308 nuclear & particles physicsmedia_common.quotation_subjectStructure functionZero (complex analysis)01 natural sciencesAsymmetryNuclear physicsDeuterium0103 physical sciencesCOMPASS experiment010306 general physicsSpin-½media_commonPhysics Letters B
researchProduct

The spin-dependent structure function of the proton g1p and a test of the Bjorken sum rule

2010

Abstract The inclusive double-spin asymmetry, A 1 p , has been measured at COMPASS in deep-inelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q 2 > 1 ( GeV / c ) 2 , 0.004 x 0.7 and improve the statistical precision of g 1 p ( x ) by a factor of two in the region x 0.02 . The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g 1 NS ( x , Q 2 ) . The isovector quark density, Δ q 3 ( x , Q 2 ) , is evaluated from a NLO QCD fit of g 1 NS . The first moment of Δ q 3 is in good agreement with the value predicted by the Bjorken su…

Quantum chromodynamicsPhysicsCoupling constantNuclear and High Energy PhysicsParticle physicsMuonIsovectorProton010308 nuclear & particles physicsDeep inelastic scattering01 natural sciencesNuclear physics0103 physical sciencesSum rule in quantum mechanics010306 general physicsSpin-½Physics Letters B
researchProduct

Spin asymmetriesA1and structure functionsg1of the proton and the deuteron from polarized high energy muon scattering

1998

We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008<x<0.7 and 0.2<Q2<100 GeV2. For the determination of A1, in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x<0.02, so it is combined with the usual method to provide the optimal set of results.

PhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)MuonProtonScatteringHadronSpin structureNuclear physicsRadiative transferHigh Energy Physics::ExperimentNuclear ExperimentSpin-½Physical Review D
researchProduct

The Polarised Valence Quark Distribution from semi-inclusive DIS

2007

The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of opposite charge has been measured by the COMPASS experiment at CERN. The data were collected in the years 2002-2004 using a 160 GeV polarised muon beam scattered off a large polarised ^6LiD target and cover the range 0.006 &lt; x &lt; 0.7 and 1 &lt; Q^2 &lt; 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an evaluation of the first moment of Delta u_v + Delta d_v which is found to be equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously measured …

QuarkNuclear and High Energy PhysicsParticle physicsmagnetic spectrometer: COMPASSStructure functionsmedia_common.quotation_subjectHadronpolarization: longitudinalFOS: Physical sciencespolarized targetcross section: ratioDeep inelastic scattering; Structure functionsmuon deuteron: deep inelastic scattering01 natural sciencesAsymmetryx-dependenceHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)charged particle: multiple productionnegative particle: electroproductionExperiment-HEP13.88.+e0103 physical sciencesstructure function: moment010306 general physicsNuclear Experimentmedia_commonPhysicsQuantum chromodynamicsMuonValence (chemistry)010308 nuclear & particles physicsHigh Energy Physics::Phenomenologycross section: differenceCERN SPSDeep inelastic scatteringpositive particle: electroproductionDeuteriumquark: valenceHigh Energy Physics::Experimentmuon: polarized beamquark: polarization140-180 GeVspin: asymmetry13.60.HbDeep inelastic scatteringParticle Physics - Experimentexperimental results
researchProduct

A large Streamer Chamber muon tracking detector in a high-flux fixed-target application.

1999

Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of 16 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system. was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported. (C) 1999 Elsevier Science B.V. All rights reserved.

PhysicsDISNuclear and High Energy PhysicsLarge Hadron ColliderSMCPhysics::Instrumentation and Detectorsbusiness.industryDetectorHigh voltageSTRIPSTracking (particle physics)law.inventionNuclear physicsOpticsSMC; DIS; Large area detectorslawTube (fluid conveyance)Detectors and Experimental TechniquesbusinessLarge area detectorsInstrumentationBeam (structure)Electronic circuit
researchProduct

The Deuteron Spin-dependent Structure Function g1(d) and its First Moment

2007

We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.

Nuclear and High Energy PhysicsParticle physicsg(1)FOS: Physical sciencesAbsolute valuespinspin structure function g101 natural sciencesCOMPASSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)polarised deep inelastic scatteringdeep inelastic scatteringstructure function0103 physical sciencesCOMPASS experimentA(1)polarised deep inelastic scattering; COMPASS; spin structure function g1; QCD analysisSinglet state010306 general physicsSpin-½Quantum chromodynamicsPhysics010308 nuclear & particles physicsDeep inelastic scatteringGluonQCD analysisDistribution functionHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

2007

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.

QuarkdeuteronNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSivers asymmetryHadrontransversity and Sivers functionFOS: Physical sciencesCOMPASS01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)nucleon structure; transverse spin and transverse momentum; transversity and Sivers functions; deuteron; COMPASS experimentCompass0103 physical sciencesCOMPASS experimentCollins010306 general physicsNuclear ExperimentCOMPASS experimenttransversityPhysicsLarge Hadron ColliderMuonSpectrometer010308 nuclear & particles physicsScatteringtransversity and Sivers functionsnucleon structureHigh Energy Physics::Experimenttransverse spin and transverse momentumasymmetryParticle Physics - Experimenttransverse single-spin asymmetry
researchProduct

The spin-dependent structure function g1(x) of the proton from polarized deep-inelastic muon scattering

1997

We present a new measurement of the virtual photon proton asymmetry $A_1^{\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\int_{0.003}^{0.7} g_{1}^{\rm p}(x){\rm d}x = 0.139 \pm 0.006~({\rm stat})\pm 0.008~({\rm syst)} \pm 0.006~({\rm evol})$. The value of the first moment $\Gamma_{1}^{\rm p} = \int_{0}^{1} g_{1}^{\rm p}(x){\rm d}x$ of $g_{1}^{\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\rm p}$ at low $x$. We find tha…

PhysicsQuantum chromodynamicsDISNuclear and High Energy PhysicsParticle physicsMuonProtonSMCScatteringg1 structure functionSMC; DIS; g1 structure functionPerturbative QCDDeep inelastic scatteringNuclear physicsSum rule in quantum mechanicsNucleonParticle Physics - ExperimentPhysics Letters B
researchProduct

A new measurement of the spin-dependent structure function $g_{1}(x)$ of the deuteron

1995

Abstract We present a new measurement of the spin-dependent structure function g 1 d of the deuteron in deep inelastic scattering of 190 GeV polarised muons on polarised deuterons, in the kinematic range 0.003 x 2 Q 2 2 . This structure function is found to be negative at small x . The first moment Γ 1 d =∫ 0 1 g 1 d d x evaluated at Q 0 2 = 10 GeV 2 is 0.034 ± 0.009 (stat.) ± 0.006 (syst.). This value is below the Ellis-Jaffe sum rule prediction by three standard deviations. Using our earlier determination of Γ 1 p , we obtain Γ 1 p − Γ 1 n = 0.199 ± 0.038 which agrees with the Bjorken sum rule.

PhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)MuonStructure functionDeep inelastic scatteringdeep inelastic scattering; spin sum rule; SMC experimentStandard deviationNuclear physicsspin sum ruleDeuteriumdeep inelastic scatteringSum rule in quantum mechanicsSMC experimentParticle Physics - ExperimentSpin-½
researchProduct

Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

2015

Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

High energyParticle physicsNuclear and High Energy PhysicsProtonNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]spin01 natural sciencesSIDIS530SINGLE SPIN ASYMMETRIESHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)TMD PDF and FFPionNuclear and High Energy Physics; TMD PDF and FF; SIDIS; spinRATIO0103 physical sciencesDISTRIBUTIONSSCATTERING[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physicsNuclear ExperimentNuclear and High Energy PhysicPhysicsMuon010308 nuclear & particles physicsScatteringlcsh:QC1-999ddc:High Energy Physics::ExperimentParticle Physics - Experimentlcsh:Physics
researchProduct

The polarized double cell target of the SMC

1999

The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials - butanol, ammonia, and deuterated butanol - with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and …

PhysicsNuclear and High Energy PhysicsDISLarge Hadron ColliderMuonanalysisScatteringSMCPolarized targetSpin structurepolarized protons and deuteronsPolarization (waves)Deep inelastic scatteringNMRdynamic nuclear polarizationSMC; DIS; Polarized targetNuclear physicsDeuteriumPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesNuclear ExperimentNucleonInstrumentation
researchProduct

Measurement of the Spin Structure of the Deuteron in the DIS Region

2005

We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 &lt; Q^2 &lt; 100 GeV^2 and 0.004&lt; x &lt;0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 &lt; x &lt; 0.03.

Nuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectFOS: Physical sciencesSpin structure01 natural sciencesAsymmetryCOMPASSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)deep inelastic scatteringstructure function0103 physical sciencesCOMPASS experiment010306 general physicsNuclear Experimentmedia_commonSpin-½PhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsDeep inelastic scatteringstructure function; COMPASS; DEEP INELASTIC-SCATTERINGstructure functionsDEEP INELASTIC-SCATTERINGHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)
researchProduct

Measurement of the SMC muon beam polarisation using the asymmetry in the elastic scattering off polarised electrons

2000

A muon beam polarimeter was built for the SMC experiment at the CERN SPS, for beam energies of 100 and 190 GeV. The beam polarisation is determined from the asymmetry in the elastic scattering off the polarised electrons of a ferromagnetic target whose magnetisation is periodically reversed. At muon energies of 100 and 190 GeV the measured polarisation is P-mu = -0.80 +/- 0.03 (stat.) +/- 0.02 (syst.) and P-mu = - 0.797 +/- 0.011 (stat.) +/- 0.012 (syst.), respectively. These results agree with measurements of the beam polarisation using a shape analysis of the decay positron energy spectrum. (C) 2000 Elsevier Science B.V. All rights reserved.

electronNuclear and High Energy PhysicsSMC; DIS; muon polarimetermedia_common.quotation_subjectmuon beamElectronAsymmetryNuclear physicsMagnetizationpolarisation measurementDetectors and Experimental TechniquesNuclear ExperimentInstrumentationmedia_commonPhysicsElastic scatteringDISLarge Hadron ColliderMuonpolarised scatteringSMCmagnetised targetPolarimeterpolarised muonPolarization (waves)muon polarimeterPhysics::Accelerator PhysicsHigh Energy Physics::Experimentpolarised
researchProduct

Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

2014

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

Particle physicsNuclear and High Energy PhysicsTMD SIDIS PDFHadronFOS: Physical sciencesSIVERS ASYMMETRIESMUON PROTON-SCATTERINGCOLLINSSIDISPDF01 natural sciences530High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)LEPTOPRODUCTIONDEPENDENCE0103 physical sciencesDISTRIBUTIONSlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentPhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsTMDELECTROPRODUCTIONDeep inelastic scatteringAzimuthAmplitudeMUON PROTON-SCATTERING; SIVERS ASYMMETRIES; SPIN ASYMMETRIES; DISTRIBUTIONS; ELECTROPRODUCTION; LEPTOPRODUCTION; DEPENDENCE; COLLINSlcsh:QC770-798High Energy Physics::ExperimentNucleonSPIN ASYMMETRIESParticle Physics - ExperimentBeam (structure)
researchProduct

Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

2006

Abstract We present a determination of the gluon polarization Δ G / G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q 2 1 ( GeV / c ) 2 , with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6 LiD target. The helicity asymmetry for the selected events is 〈 A ∥ / D 〉 = 0.002 ± 0.019 ( stat ) ± 0.003 ( syst ) . From this value, we obtain in a leading-order QCD analysis Δ G / G = 0.024 ± 0.089 ( stat ) ± 0.057 ( syst ) at x g = 0.095 and μ 2 ≃ 3 ( GeV / c ) 2 .

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsMuon010308 nuclear & particles physicsHadronDeep inelastic scattering01 natural sciencesHelicityGluonNuclear physics0103 physical sciencesCOMPASS experimentHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Measurement of the spin-dependent structure function g1(x) of the deuteron

1993

We report on the first measurement of the spin-dependent structure function g1d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006&lt;x&lt;0.6, 1 GeV2&lt;Q2&lt;30 GeV2. The first moment, Γ1d=sh{phonetic}01 g1d dx=0.023±0.020 (stat.) ± 0.015 (syst.), is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g1p, we infer the first moment of the spin-dependent neutron structure function g1n. The difference Γ1p-Γ1n=0.20 ±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ1p-Γ1n=0.191 ±0.002.

deuteron: polarized targetNuclear and High Energy PhysicsINELASTIC E-P; POLARIZED PROTONS; SUM-RULE; SCATTERING; ELECTROPRODUCTION; ASYMMETRYINELASTIC E-PProtonpolarized target: deuterondeep inelastic scattering: muon deuteronstructure function: spinmuon deuteron: deep inelastic scatteringSUM-RULE530Nuclear physicsINELASTIC E-P; POLARIZED PROTONS; SUM-RULE; SCATTERING; ELECTROPRODUCTION; ASYMMETRY; MODELTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYSCATTERINGNeutronpolarized beam: muonSpin-½PhysicsQuantum chromodynamicsspin: structure functionMuonScatteringdeuteron: structure functionELECTROPRODUCTIONnucleon: structure functionCERN SPSDeep inelastic scatteringmomentmagnetic spectrometer: experimental resultsPOLARIZED PROTONSapprox. 100 GeVASYMMETRYSum rule in quantum mechanicsmuon: polarized beamParticle Physics - ExperimentPhysics Letters B
researchProduct

Measurement of proton and nitrogen polarization in ammonia and a test of equal spin temperature

1998

The 1996 data taking of the SMC experiment used polarized protons to measure the spin-dependent structure function g(1) of the proton. Three liters of solid granular ammonia were irradiated at the Bonn electron linac in order to create the paramagnetic radicals which are needed for polarizing the protons. Proton polarizations of +/- (90 +/- 2.5)% were routinely reached. An analysis based on a theoretical line shape for spin-1. systems with large quadrupolar broadening was developed which allowed the nitrogen polarization in the ammonia to be determined with a 10% relative error. The measured quadrupolar coupling constant of N-14 agrees well with earlier extrapolated values. The polarization…

Nuclear and High Energy Physicsspin resonanceProtonp polarized targetNuclear Theorychemistry.chemical_elementAmmoniachemistry.chemical_compoundParamagnetismIrradiationDetectors and Experimental TechniquesNuclear ExperimentInstrumentationPhysicsCoupling constantpolarizationquadrupolar interactionsPolarization (waves)Nitrogennitrogen polarized targetdynamic nuclearnuclear magnetic resonancechemistryDeuteriump polarized target; nitrogen polarized target; spin resonanceAtomic physics
researchProduct