0000000000147305
AUTHOR
Marco Stampanoni
Natural gas hydrate investigations by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM)
[1] We report the 3D microstructure analyses of natural gas hydrates sampled from Gulf of Mexico. The samples were characterized by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM) using the ‘TOMCAT’ beam line at the Swiss Light Source (SLS). The SRXCTM demonstrates its applicability to unlock some microscopic features of the marine hydrates, in particular of crystallite size and grain boundary network. The gas hydrate domains are surrounded by a network of pores of typically a few micrometers, which are largely due to decomposition. Out of the SRXCTM data, the porosity, total volume of the voids, the void surface area and number of the total gas-filled voids have been calcu…
Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain
The formation of new blood vessels and the establishment of vascular networks are crucial during brain development, in the adult healthy brain, as well as in various diseases of the central nervous system. Here, we describe a step-by-step protocol for our recently developed method that enables hierarchical imaging and computational analysis of vascular networks in postnatal and adult mouse brains. The different stages of the procedure include resin-based vascular corrosion casting, scanning electron microscopy, synchrotron radiation and desktop microcomputed tomography imaging, and computational network analysis. Combining these methods enables detailed visualization and quantification of t…
3-D imaging and quantification of graupel porosity by synchrotron-based micro-tomography
The air bubble structure is an important parameter to determine the radiation properties of graupel and hailstones. For 3-D imaging of this structure at micron resolution, a cryo-stage was developed. This stage was used at the tomography beamline of the Swiss Light Source (SLS) synchrotron facility. The cryo-stage setup provides for the first time 3-D-data on the individual pore morphology of ice particles down to infrared wavelength resolution. In the present study, both sub-mm size natural and artificial ice particles rimed in a wind tunnel were investigated. In the natural rimed ice particles, Y-shaped air-filled closed pores were found. When kept for half an hour at −8 °C, this morpholo…
Real-time 3D imaging of Haines jumps in porous media flow.
Newly developed high-speed, synchrotron-based X-ray computed microtomography enabled us to directly image pore-scale displacement events in porous rock in real time. Common approaches to modeling macroscopic fluid behavior are phenomenological, have many shortcomings, and lack consistent links to elementary pore-scale displacement processes, such as Haines jumps and snap-off. Unlike the common singular pore jump paradigm based on observations of restricted artificial capillaries, we found that Haines jumps typically cascade through 10–20 geometrically defined pores per event, accounting for 64% of the energy dissipation. Real-time imaging provided a more detailed fundamental understanding o…
Micrometer-resolution reconstruction and analysis of whole mouse brain vasculature by synchrotron-based phase-contrast tomographic microscopy
AbstractNervous tissue metabolism is mainly supported by the dense thread of blood vessels which mainly provides fast supplies of oxygen and glucose. Recently, the supplying role of the brain vascular system has been examined in major neurological conditions such as the Alzheimer’s and Parkinson’s diseases. However, to date, fast and reliable methods for the fine level microstructural extraction of whole brain vascular systems are still unavailable. We present a methodological framework suitable for reconstruction of the whole mouse brain cerebral microvasculature by X-ray tomography with the unprecedented pixel size of 0.65 μm. Our measurements suggest that the resolving power of the techn…