0000000000147459

AUTHOR

Frederik Wegelin

showing 8 related works from this author

Magnetization dynamics in polycrystalline Permalloy and epitaxial Co platelets observed by time-resolved photoemission electron microscopy

2009

We studied the dynamic magnetization response in rectangular polycrystalline Permalloy and also epitaxial Co structures (lateral sizes comprised tens of microns at a thickness of tens of nanometers) during the action of a magnetic field pulse, using time-resolved X-ray photoemission electron microscopy with a time resolution of 10 ps. In the case of Permalloy platelets the restoring torque that is necessary for the stroboscopic image acquisition is provided by the Landau flux closure structure representing a minimum of the free energy. We investigated the dynamic response of 90° Neel domain walls. The main results are: the maximum velocity of the domain wall is 1.5 × 104 m/s, the intrinsic …

PermalloyCondensed Matter::Materials SciencePhotoemission electron microscopyMagnetization dynamicsMagnetizationMagnetic anisotropyDomain wall (magnetism)Condensed matter physicsChemistryCondensed Matter PhysicsAnisotropyElectronic Optical and Magnetic MaterialsMagnetic fieldphysica status solidi (b)
researchProduct

Soft X-ray photoelectron microscopy used for the characterization of diamond, a-C and CN , thin films

2002

Abstract This article gives an overview about the application of X-ray photoemission electron microscopy (X-PEEM) used for the analysis of carbon thin films. We present the results of an X-ray absorption near edge structure (XANES) study of CVD diamond, a-C and CNx films on Si (100) as well as a defect analysis of a hard disc scratch test. The sp2/sp3 ratio of the carbon films was determined and mapped in the electron micrographs, which show localized defects in the surface.

Materials scienceMechanical EngineeringAnalytical chemistryDiamondchemistry.chemical_elementGeneral ChemistryChemical vapor depositionengineering.materialElectron spectroscopyXANESElectronic Optical and Magnetic MaterialsPhotoemission electron microscopyCarbon filmchemistryMaterials ChemistryengineeringElectrical and Electronic EngineeringThin filmCarbonDiamond and Related Materials
researchProduct

Magnetization dynamics in microscopic spin-valve elements: Shortcomings of the macrospin picture

2007

We have studied ultrafast magnetodynamics in micropatterned spin-valve structures using time-resolved x-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism. Exciting the system with ultrafast field pulses of $250\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ width, we find the dynamic response of the free layer to fall into two distinctly different contributions. On the one hand, it exhibits localized spin wave modes that strongly depend on the shape of the micropattern. A field pulse applied perpendicular to the exchange bias field along the diagonal of a square pattern leads to the excitation of a standing spin wave mode with two nodes along the field direction.…

PhysicsMagnetization dynamicsCondensed matter physicsField (physics)Magnetic circular dichroismSpin valveCondensed Matter PhysicsJElectronic Optical and Magnetic MaterialsPhotoemission electron microscopyExchange biasSpin waveddc:530ExcitationPhysical Review B
researchProduct

Self-Trapping of Magnetic Oscillation Modes in Landau Flux-Closure Structures

2005

We investigated the magnetodynamics in rectangular Permalloy platelets by means of time-resolved x-ray photoemission microscopy. 10 nm thick platelets of size 16 x 32 microm were excited by an oscillatory field along the short side of the sample with a fundamental frequency of 500 MHz and considerable contributions of higher harmonics. Under the influence of the oscillatory field, the Néel wall in the initial classical Landau pattern shifts away from the center, corresponding to an induced magnetic moment perpendicular to the exciting field. This phenomenon is explained by a self-trapping effect of the dominating spin-wave mode when the system is excited just below the resonance frequency. …

PermalloyPhysicsMagnetic momentMagnetic domainCondensed matter physicsSpin waveExcited stateHarmonicsddc:550PerpendicularGeneral Physics and AstronomyFundamental frequencyJPhysical Review Letters
researchProduct

Transient spatio-temporal domain patterns in permalloy microstructures induced by fast magnetic field pulses

2006

The response of multidomain flux-closure structures (Landau states) in micrometer-scale magnetic thin-film elements upon fast magnetic field pulses leads to the excitation of magnetic eigenmodes and to short-lived domain patterns that do not occur in quasi-static remagnetisation. Such transient spatio-temporal patterns and particular detail features are discussed. Examples are presented for permalloy platelets of various shapes and sizes. Dynamic series of domain patterns with variable delay between field pulse and photon pulse (synchrotron radiation) have been taken using stroboscopic XMCD-PEEM. Precessional remagnetisation starts at the domain boundaries. The damped precessional motion pr…

PhysicsPermalloyNuclear and High Energy PhysicsMagnetization dynamicsCondensed matter physicsField (physics)business.industryMagnetic fieldPulse (physics)Condensed Matter::Materials ScienceMagnetizationOpticsTransient (oscillation)businessInstrumentationExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Investigating spintronics thin film systems with synchrotron radiation

2009

Abstract Spintronics is a research field involving a wide variety of different magnetic materials. Synchrotron radiation in the VUV and soft X-ray regime is ideally suited to investigate the relationships between magnetic properties and electronic structure of spintronics thin film stacks. Complex layered structures and nanomagnets are the main building blocks for current and future spintronics applications. In this contribution we describe the study of spintronics model systems with respect to the static and dynamic behavior with an emphasis on interfaces.

Magnetization dynamicsRadiationMaterials scienceCondensed matter physicsSpintronicsMagnetismPhotoemission microscopySynchrotron radiationElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectNanomagnetEngineering physicsCondensed Matter::Materials ScienceComputer Science::Emerging TechnologiesThin filmRadiation Physics and Chemistry
researchProduct

Stroboscopic XMCD–PEEM imaging of standing and propagating spinwave modes in permalloy thin-film structures

2007

Abstract Using synchrotron-based stroboscopic photoemission electron microscopy with X-ray circular dichroism as contrast method, we have investigated the high-frequency response of permalloy thin-film structures. Standing precessional modes have been studied in rectangular elements (16 × 32 μm 2 , 10 nm thick) with a high time resolution of about 15 ps in the low- α mode of BESSY. With increasing amplitude of the applied magnetic AC field the particle is driven from an initial symmetric Landau flux-closure state into an asymmetric state and finally into a single-domain state magnetized perpendicular to the applied field H AC . The electromagnetic microwave field thus can induces a net magn…

PermalloyPhysicsCondensed matter physicsbusiness.industrySurfaces and InterfacesCondensed Matter PhysicsSynchrotronSurfaces Coatings and Filmslaw.inventionPhotoemission electron microscopyMagnetizationAmplitudeOpticslawMaterials ChemistryPerpendicularThin filmbusinessMicrowaveSurface Science
researchProduct

Nondestructive full-field imaging XANES-PEEM analysis of cosmic grains

2006

For chemical analysis of submicron particles, mass spectrometric methods have the disadvantage of being destructive. Thus, a nondestructive elemental and chemical mapping with a high spatial resolution prior to mass analysis is extremely valuable to precharacterize the sample. Here, first results are presented of combined XANES (x-ray absorption near-edge structure) and PEEM (photoemission electron microscopy) measurements on a cosmic grain fraction from the Murchison meteorite. This nondestructive full-field imaging method is well suited for a quantitative analysis and for a preselection prior to detailed mass spectrometric investigations with isotopic resolution/selectivity. A spectral un…

Chemical imagingMurchison meteoritePhotoemission electron microscopyNuclear magnetic resonanceMaterials scienceComposite numberResolution (electron density)Analytical chemistryAbsorption (logic)Condensed Matter PhysicsImage resolutionXANESElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct