0000000000147900

AUTHOR

Rosario Nicola Brancaccio

PVAmpliconFinder: a workflow for the identification of human papillomaviruses from high-throughput amplicon sequencing

Abstract Background The detection of known human papillomaviruses (PVs) from targeted wet-lab approaches has traditionally used PCR-based methods coupled with Sanger sequencing. With the introduction of next-generation sequencing (NGS), these approaches can be revisited to integrate the sequencing power of NGS. Although computational tools have been developed for metagenomic approaches to search for known or novel viruses in NGS data, no appropriate tool is available for the classification and identification of novel viral sequences from data produced by amplicon-based methods. Results We have developed PVAmpliconFinder, a data analysis workflow designed to rapidly identify and classify kno…

research product

Generation of a novel next-generation sequencing-based method for the isolation of new human papillomavirus types

Abstract With the advent of new molecular tools, the discovery of new papillomaviruses (PVs) has accelerated during the past decade, enabling the expansion of knowledge about the viral populations that inhabit the human body. Human PVs (HPVs) are etiologically linked to benign or malignant lesions of the skin and mucosa. The detection of HPV types can vary widely, depending mainly on the methodology and the quality of the biological sample. Next-generation sequencing is one of the most powerful tools, enabling the discovery of novel viruses in a wide range of biological material. Here, we report a novel protocol for the detection of known and unknown HPV types in human skin and oral gargle …

research product