Synthesis, reactivity, crystal structures and catalytic activity of new chelating bisimidazolium-carbene complexes of Rh
A series of new bridging, chelating and pincer N-heterocyclic carbenes of RhI and RhIII have been obtained under mild conditions. The compounds have been fully characterised and their crystal structures determined. The chelate-pincer coordination of the ligands means that the stability of these compounds is significantly greater than other carbene complexes of Rh. The compounds have been tested in catalytic reactions such as hydrogen transfer from alcohols to ketones, and hydrosilylation of terminal olefins and alkynes; they show a high activity for both processes. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)
A New Rhodium(III) Complex with a Tripodal Bis(imidazolylidene) Ligand. Synthesis and Catalytic Properties
A new bis(imidazolylidene) tripodal ligand has been obtained by a simple method. The coordination of this ligand to Rh provides the first Rh(III) complex with a bis(carbene) ligand in a tripodal coordination, and its catalytic properties toward hydrogen transfer have been examined.
An N-heterocyclic carbene/iridium hydride complex from the oxidative addition of a ferrocenyl-bisimidazolium salt: implications for synthesis.
Carbene complexes of rhodium and iridium from tripodal N-heterocyclic carbene ligands: synthesis and catalytic properties.
Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes.
Synthesis and Reactivity of New Chelate-N-Heterocyclic Biscarbene Complexes of Ruthenium
The carbene-ligand precursors methylenebis(N-alkylimidazolium) iodide (alkyl = methyl, neo-pentyl) and ethylenebis(N-methylimidazolium) chloride have been used in the preparation of several new Ru(II)-p-cymene complexes where the ligand behaves as mono- and bidentate. The molecular structures of the two biscarbene-complexes are reported. From the data reported, we can conclude that steric reasons (mainly the bisimidazolium linkers, methylene/ethylene) are the main factors determining both reactivity and synthetic difficulties of the products reported.