0000000000148706

AUTHOR

Nuno Carvalhais

showing 3 related works from this author

Environment-sensitivity functions for gross primary productivity in light use efficiency models

2022

International audience; The sensitivity of photosynthesis to environmental changes is essential for understanding carbon cycle responses to global climate change and for the development of modeling approaches that explains its spatial and temporal variability. We collected a large variety of published sensitivity functions of gross primary productivity (GPP) to different forcing variables to assess the response of GPP to environmental factors. These include the responses of GPP to temperature; vapor pressure deficit, some of which include the response to atmospheric CO2 concentrations; soil water availability (W); light intensity; and cloudiness. These functions were combined in a full fact…

0106 biological sciencesAtmospheric Science010504 meteorology & atmospheric sciencesVapour Pressure DeficitBiomeRandomly sampled sitesPlant Ecology and Nature ConservationForcing (mathematics)04 Earth Sciences 06 Biological Sciences 07 Agricultural and Veterinary SciencesAtmospheric sciences01 natural sciences[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsFluxNetLaboratory of Geo-information Science and Remote SensingEvapotranspirationMeteorology & Atmospheric SciencesEcosystemLaboratorium voor Geo-informatiekunde en Remote SensingRadiation use efficiencySensitivity formulations0105 earth and related environmental sciencesGlobal and Planetary ChangeDiffuse fractionGlobal warmingModel equifinalityForestryModel comparison15. Life on landPE&RCLight intensity13. Climate actionEnvironmental sciencePlantenecologie en NatuurbeheerCarbon assimilationTemporal scalesAgronomy and Crop Science010606 plant biology & botany
researchProduct

Deep learning and process understanding for data-driven Earth system science

2017

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybri…

Big DataTime FactorsProcess modelingGeospatial analysis010504 meteorology & atmospheric sciencesProcess (engineering)0208 environmental biotechnologyBig dataGeographic Mapping02 engineering and technologycomputer.software_genreMachine learning01 natural sciencesPattern Recognition AutomatedData-drivenDeep LearningSpatio-Temporal AnalysisHumansComputer SimulationWeather0105 earth and related environmental sciencesMultidisciplinarybusiness.industryDeep learningUncertaintyReproducibility of ResultsTranslatingRegression Psychology020801 environmental engineeringEarth system scienceKnowledgePattern recognition (psychology)Earth SciencesFemaleSeasonsArtificial intelligencebusinessPsychologyFacial RecognitioncomputerForecastingNature
researchProduct

Global Groundwater-Vegetation Relations

2017

Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater-vegetation interactions are poorly understood at the global scale. Using several high-resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two-thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture-limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, …

010504 meteorology & atmospheric sciencesWater table0208 environmental biotechnology02 engineering and technologyecohydrological patterns01 natural sciencesgroundwaterEcosystemWater cycleplant productivity0105 earth and related environmental sciencesHydrologyecosystemVegetation15. Life on land6. Clean water020801 environmental engineeringGeophysicsProductivity (ecology)13. Climate actionSpatial ecologyGeneral Earth and Planetary SciencesEnvironmental scienceGroundwaterWater usespatial covariation
researchProduct