0000000000149635

AUTHOR

Jean-eric Pin

Varieties Generated by Certain Models of Reversible Finite Automata

Reversible finite automata with halting states (RFA) were first considered by Ambainis and Freivalds to facilitate the research of Kondacs-Watrous quantum finite automata. In this paper we consider some of the algebraic properties of RFA, namely the varieties these automata generate. Consequently, we obtain a characterization of the boolean closure of the classes of languages recognized by these models.

research product

The expressive power of the shuffle product

International audience; There is an increasing interest in the shuffle product on formal languages, mainly because it is a standard tool for modeling process algebras. It still remains a mysterious operation on regular languages.Antonio Restivo proposed as a challenge to characterize the smallest class of languages containing the singletons and closed under Boolean operations, product and shuffle. This problem is still widely open, but we present some partial results on it. We also study some other smaller classes, including the smallest class containing the languages composed of a single word of length 2 which is closed under Boolean operations and shuffle by a letter (resp. shuffle by a l…

research product

Languages associated with saturated formations of groups

International audience; In a previous paper, the authors have shown that Eilenberg's variety theorem can be extended to more general structures, called formations. In this paper, we give a general method to describe the languages corresponding to saturated formations of groups, which are widely studied in group theory. We recover in this way a number of known results about the languages corresponding to the classes of nilpotent groups, soluble groups and supersoluble groups. Our method also applies to new examples, like the class of groups having a Sylow tower.; Dans un article précédent, les auteurs avaient montré comment étendre le théorème des variétés d'Eilenberg à des structures plus g…

research product

Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited

International audience; We present an extension of Eilenberg's variety theorem, a well-known result connecting algebra to formal languages. We prove that there is a bijective correspondence between formations of finite monoids and certain classes of languages, the formations of languages. Our result permits to treat classes of finite monoids which are not necessarily closed under taking submonoids, contrary to the original theory. We also prove a similar result for ordered monoids.; Nous présentons une extension du théorème des variétés d'Eilenberg, un résultat célèbre reliant l'algèbre à la théorie des langages formels. Nous montrons qu'il existe une correspondance bijective entre les form…

research product