0000000000150150

AUTHOR

Julius M. Guccione

Left Ventricle Biomechanics of Low-Flow, Low-Gradient Aortic Stenosis: A Patient-Specific Computational Model

This study aimed to create an imaging-derived patient-specific computational model of low-flow, low-gradient (LFLG) aortic stenosis (AS) to obtain biomechanics data about the left ventricle. LFLG AS is now a commonly recognized sub-type of aortic stenosis. There remains much controversy over its management, and investigation into ventricular biomechanics may elucidate pathophysiology and better identify patients for valve replacement. ECG-gated cardiac computed tomography images from a patient with LFLG AS were obtained to provide patient-specific geometry for the computational model. Surfaces of the left atrium, left ventricle (LV), and outflow track were segmented. A previously validated …

research product

Patient-Specific Analysis of Ascending Thoracic Aortic Aneurysm with the Living Heart Human Model

In ascending thoracic aortic aneurysms (ATAAs), aneurysm kinematics are driven by ventricular traction occurring every heartbeat, increasing the stress level of dilated aortic wall. Aortic elongation due to heart motion and aortic length are emerging as potential indicators of adverse events in ATAAs

research product

Impact of Aortic Stenosis on Myofiber Stress: Translational Application of Left Ventricle-Aortic Coupling Simulation

The severity of aortic stenosis (AS) has traditionally been graded by measuring hemodynamic parameters of transvalvular pressure gradient, ejection jet velocity, or estimating valve orifice area. Recent research has highlighted limitations of these criteria at effectively grading AS in presence of left ventricle (LV) dysfunction. We hypothesized that simulations coupling the aorta and LV could provide meaningful insight into myocardial biomechanical derangements that accompany AS. A realistic finite element model of the human heart with a coupled lumped-parameter circulatory system was used to simulate AS. Finite element analysis was performed with Abaqus FEA. An anisotropic hyperelastic mo…

research product

From Clinical Imaging to Patient-Specific Computational Model: Rapid Adaptation of the Living Heart Human Model to a Case of Aortic Stenosis

Aortic stenosis (AS) is the most common acquired heart valve disease in the developed world. Traditional methods of grading AS have relied on the measurement of aortic valve area and transvalvular pressure gradient. Recent research has highlighted the existence of AS variants that do not meet classic criteria for severe AS such as low-flow, low-gradient AS. With the development of sophisticated multi-scale computational models, investigation into the left ventricular (LV) biomechanics of AS offers new insights into the pathophysiology that may guide treatment decisions surrounding AS. Building upon our prior study entailing LV-aortic coupling where AS conditions were applied to the idealize…

research product

On the severity of aortic stenosis in ascending aortic aneurysm: A computational tool to examine ventricular-arterial interaction and aortic wall stress

Abstract An ascending thoracic aortic aneurysm (ATAA) is a life-threatening cardiovascular consequence of vessel dilatation that portends adverse events and death. From a clinical perspective, ATAA should not be treated as an isolated disease, and surgery is often carried out in the presence of AS, aortic insufficiency or a calcified valve leaflet. Aortic stenosis (AS) is common in ATAAs and leads to both vessel rigidity and left ventricular (LV) impairment. In this study, lumped-parameter modeling and computational analysis were used to assess the change in the wall shear stress (WSS) and intramural wall stress of patient-specific ATAA models with different degrees of AS (i.e., mild to sev…

research product

Numerical simulation of transcatheter mitral valve replacement: The dynamic implication of LVOT obstruction in the valve-in-ring case.

Transcatheter mitral valve replacement (TMVR) has been used for “off-label” treatment when annuloplasty band ring for mitral repair fails. However, the complex anatomy and function of the mitral valve may lead to fatal complications as a result of the left ventricular outflow tract (LVOT) obstruction in TMVR. We report the structural and hemodynamic response of LVOT obstruction resulting from TMVR with the Edwards SAPIEN 3 Ultra (S3) device. We modified the original Living Heart Human Model (LHHM) to account for a failed mitral valve with an annuloplasty band ring and simulated the cardiac beating condition in the setting of S3 device implantation. Findings demonstrated a high dynamic behav…

research product