0000000000150172

AUTHOR

Alexandre Kudlinski

Emergence of spectral incoherent solitons through supercontinuum generation in photonic crystal fibers

International audience; We report an experimental and numerical study of the spontaneous emergence of spectral incoherent solitons through supercontinuum generation in a two zero-dispersionwavelengths photonic crystal fiber. By using a simple experimental setup, we show that the highly nonlinear regime of supercontinuum generation is characterized by the emergence of a spectral incoherent soliton in the low-frequency edge of the supercontinuum spectrum. We show that a transition occurs from the discrete spectral incoherent soliton to its continuous counterpart as the power of the laser is increased. Contrary to conventional solitons, spectral incoherent solitons do not exhibit a confinement…

research product

Thermodynamic approach of supercontinuum generation in photonic crystal fiber

We show that the spectral broadening process inherent to supercontinuum generation may be described as a thermalization process, which results from the natural irreversible evolution of the optical field towards a thermodynamic equilibrium state.

research product

Thermodynamic approach of supercontinuum generation

International audience; This paper is aimed at providing an overview on recent theoretical and experimental works in which a thermodynamic description of the incoherent regime of supercontinuum generation has been formulated. On the basis of the wave turbulence theory, we show that this highly nonlinear and quasi-continuous-wave regime of supercontinuum generation is characterized by two different phenomena. (i) A process of optical wave thermalization ruled by the four-wave mixing effects: The spectral broadening inherent to supercontinuum generation is shown to result from the natural tendency of the optical field to reach its thermodynamic equilibrium state, i. e., the state of maximum n…

research product

Thermodynamic approach of statistical nonlinear optics

The coherence properties of random nonlinear optical fields can be described in detail by thermodynamic arguments based on the wave turbulence theory. We shall review recent progress on this kinetic approach of statistical nonlinear optics.

research product

Roadmap on optical rogue waves and extreme events

Nail Akhmediev et al. ; 38 págs.; 28 figs.

research product

Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber

International audience; We report an experimental, numerical and theoretical study of the incoherent regime of supercontinuum generation in a two zero dispersion wavelengths fiber. By using a simple experimental setup, we show that the phenomenon of spectral broadening inherent to supercontinuum generation can be described as a thermalization process, which is characterized by an irreversible evolution of the optical field towards a thermal equilibrium state. In particular, the thermodynamic equilibrium spectrum predicted by the kinetic wave theory is characterized by a double peak structure, which has been found in quantitative agreement with the numerical simulations without adjustable pa…

research product

Catastrophic process of coherence degradation

We predict a catastrophic process of coherence degradation characterized by a virtually unlimited spectral broadening of the waves. This effect is described by self-similar solutions of the kinetic equations inherent to the wave turbulence theory.

research product

Double-seed stabilization of a continuum generated from fourth-order modulation instability

Summary form only given. Modulation instability (MI) is a ubiquitous process in which a weak field is exponentially amplified through a balance between dispersive and nonlinear effects. In single-mode scalar optical fibers, the positive Kerr nonlinearity phase-mismatch can be compensated by anomalous second-order dispersion, a process known as MI2. But phase-matched solutions can also exist in normal second-order dispersion region, thanks to negative even higher-order terms [1]. This process, that we label MI4, gives rise to a pair of narrow sidebands widely detuned far from the pump. MI may grow spontaneously from broadband noise and is usually the main process involved in the early stages…

research product

Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation

International audience; High second-order susceptibilities are created by thermal poling in bulk germanium disulfide based chalcogenide glasses. Experimental conditions of the poling treatment (temperature, voltage, time) were optimized for each glass composition. The second-order nonlinear signals were recorded by using the Maker fringes experiment and a second-order coefficient χ(2) up to 8 pm V-1 was measured in the Ge25Sb10S65 glass. This value is obtained using a simulation based on accurate knowledge of the thickness of the nonlinear layer. Two mechanisms are proposed to explain the creation of a nonlinear layer under the anode: the formation and the migration of charged defects towar…

research product

Active reduction of fluctuations in fourth-order modulation instability

International audience; We experimentally study the fluctuation properties of a scalar fourth-order modulation instability process obtained by pumping a photonic crystal fiber in the normal dispersion region. We observe large wavelength-dependant pulse-to-pulse fluctuations which cannot be significantly reduced by stimulating the process with a single seed. Their reduction requires two seeds slightly detuned from the maximum gain frequency in order to also stimulate the second-order modulation instability process cascaded from the fourth-order one. This concept is validated by experiments and numerical simulations.

research product