6533b85efe1ef96bd12bfe0e

RESEARCH PRODUCT

Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation

Jean-luc AdamHassina ZeghlacheFrédéric SmektalaVirginie NazabalYves QuiquempoisC. DuvergerGilbert MartinelliOdile BohnkeMarie GuignardAlexandre KudlinskiAlain Moréac

subject

Materials scienceChalcogenideAnalytical chemistry02 engineering and technologyCharge transportelectrical01 natural sciencesMolecular physicslaw.inventionGermanium sulfides010309 opticsBiomaterialschemistry.chemical_compoundsymbols.namesakelaw0103 physical sciencesElectrochemistryConductivityGlassesPolingSecond-harmonic generation[CHIM.MATE]Chemical Sciences/Material chemistryNonlinear optical materialsSecond harmonic generationGermanium disulfide021001 nanoscience & nanotechnologyCondensed Matter PhysicsCathodeElectronic Optical and Magnetic MaterialsAnodechemistryGlass Poling[ CHIM.MATE ] Chemical Sciences/Material chemistrysymbolsDefects0210 nano-technologyRaman spectroscopyChalcogenides

description

International audience; High second-order susceptibilities are created by thermal poling in bulk germanium disulfide based chalcogenide glasses. Experimental conditions of the poling treatment (temperature, voltage, time) were optimized for each glass composition. The second-order nonlinear signals were recorded by using the Maker fringes experiment and a second-order coefficient χ(2) up to 8 pm V-1 was measured in the Ge25Sb10S65 glass. This value is obtained using a simulation based on accurate knowledge of the thickness of the nonlinear layer. Two mechanisms are proposed to explain the creation of a nonlinear layer under the anode: the formation and the migration of charged defects towards the anode may mainly occur in Ge20Ga5Sb10S65 and Ge25Ga5S70 glasses, whereas the migration of Na+ ions towards the cathode may be responsible for the accumulation of negative charges under the anode in Ge33S67 and Ge25Sb10S65 glasses. Different electronic conductivity behaviors seem to be at the origin of the phenomenon. In parallel, the potential effect of the poling treatment on the structural and electronic properties is studied using Raman spectroscopy and secondary ion mass spectroscopy measurements.

https://hal.archives-ouvertes.fr/hal-00369235