0000000000150474

AUTHOR

Kenneth W. Tobin

AUTOMATIC QUALITY ENHANCEMENT AND NERVE FIBRE LAYER ARTEFACTS REMOVAL IN RETINA FUNDUS IMAGES BY OFF AXIS IMAGING

International audience; Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Even with relative ease of use, the images produced sometimes suffer from reflectance artefacts mainly due to the nerve fibre layer (NFL) or camera lens related reflections. We propose a technique that employs multiple fundus images to obtain a single higher quality image without these reflectance artefacts, which also compensates for a suboptimal illumination. The removal of bright artefacts, can have great benefits for the reduction of false positives in the detection of retinal lesions by automatic systems or manual inspectio…

research product

Bright Retinal Lesions Detection using Color Fundus Images Containing Reflective Features

Recently, the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is increasing among the young population. Retina fundus images of patients younger than 20 years old present a high amount of reflectance due to the Nerve Fibre Layer (NFL). Generally, the younger the patient the more the reflectance is visible. We are not aware of algorithms able to explicitly deal with this type of artifact.

research product

Features extraction on complex images

The accessibility of inexpensive and powerful computers has allowed true digital holography to be used for industrial inspection using microscopy. This technique allows the capture of a complex image (i.e., one containing magnitude and phase), and the reconstruction of the phase and magnitude information. Digital holograms give a new dimension to texture analysis, since the topology information can be used as an additional way to extract features. This new technique can be used to extend previous work on the image segmentation of patterned wafers for defect detection. The paper presents a comparison between the features obtained using Gabor filtering on complex images under illumination and…

research product

Microaneurysms detection with the radon cliff operator in retinal fundus images

ABSTRACT Diabetic Retinopathy (DR) is one of the leading causes of blindness in the industrialized world. Early detection is thekey in providing effective treatment. However, the current number of trained eye care specialists is inadequate to screenthe increasing number of diabetic patients. In recent years, automated and semi-automated systems to detect DR withcolor fundus images have been developedwith encouraging,but not fully satisfactory results. In this study we present theinitial results of a new techniquefor the detection and localization of microaneurysms,an early sign of DR. The algorithmis based on three steps: candidates selection, the actual microaneurysms detection and a Þnal …

research product

Quality Control by Artificial Vision

This PDF file contains the editorial “Quality Control by Artificial Vision” for JEI Vol. 13 Issue 03

research product

Gabor filtering for feature extraction on complex images: application to defect detection on semiconductors

AbstractThis paper is an extension of previous work on the image segmentation of electronic structures on patterned wafers to improve the defect detection process on optical inspection tools. Die-to-die wafer inspection is based upon the comparison of the same area on two neighbourhood dies. The dissimilarities between the images are a result of defects in this area of one of the dies. The noise level can vary from one structure to the other, within the same image. Therefore, segmentation is needed to create a mask and apply an optimal threshold in each region. Contrast variation on the texture can affect the response of the parameters used for the segmentation. This paper shows a method of…

research product

Exudate-based diabetic macular edema detection in fundus images using publicly available datasets

International audience; Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, we introduce a new methodology for diagnosis of DME using a novel set of features based on colour, wavelet decomposition and automatic lesion segmentation. These features are employed to train a classifier able to automatically diagnose DME through the presence of exudation. We present a new publicly available dataset with ground-truth data containing 169 patients from various ethnic groups and levels of DME. This and other two publi…

research product

Patterned wafer segmentation

This paper is an extension of our previous work on the image segmentation of electronic structures on patterned wafers to improve the defect detection process on optical inspection tools. Die-to-die wafer inspection is based upon the comparison of the same area on two neighborhood dies. The dissimilarities between the images are a result of defects in this area of one of the die. The noise level can vary from one structure to the other, within the same image. Therefore, segmentation is needed to create a mask and apply an optimal threshold in each region. Contrast variation on the texture can affect the response of the parameters used for the segmentation. This paper shows a method to antic…

research product

Textureless macula swelling detection with multiple retinal fundus images

Retinal fundus images acquired with nonmydriatic digital fundus cameras are versatile tools for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relatively low cost, these cameras can be employed by operators with limited training for telemedicine or point-of-care (PoC) applications. We propose a novel technique that uses uncalibrated multiple-view fundus images to analyze the swelling of the macula. This innovation enables the detection and quantitative measurement of swollen areas by remote ophthalmologists. This capability is not available with a single image and prone to error with stereo fundus cameras. We also present automatic alg…

research product

3D and multispectral imaging for subcutaneous veins detection.

The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV) catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms, however, this process is to be replaced by an automated system. Experiments to determine the best NIR wavelengths to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm or wrist surface are presented. For illumination our system is composed of a mercury arc lamp coupled to a 10nm band-pass spectrometer. A structured lighting system is also coupled to our multispectral system in order to provide 3D information of the p…

research product

Microaneurysm detection with radon transform-based classification on retina images.

The creation of an automatic diabetic retinopathy screening system using retina cameras is currently receiving considerable interest in the medical imaging community. The detection of microaneurysms is a key element in this effort. In this work, we propose a new microaneurysms segmentation technique based on a novel application of the radon transform, which is able to identify these lesions without any previous knowledge of the retina morphological features and with minimal image preprocessing. The algorithm has been evaluated on the Retinopathy Online Challenge public dataset, and its performance compares with the best current techniques. The performance is particularly good at low false p…

research product

Simulation of skin reflectance images using 3D tissue modeling and multispectral Monte Carlo light propagation.

In this work we propose a method to simulate the expected, i.e. seen by a camera, multispectral reflectance images of a large skin surface area by combining Monte Carlo light propagation model and realistic tissue modeling based on three dimensional data acquisition of human body areas. In particular, we aim to simulate more accurately light transport in biological tissue by taking into account the geometrical topography of the skin surface, the structure and optical properties of the skin layers, and the subcutaneous veins in presence. We describe our computation method in detail and present simulated reflectance images results.

research product

3D multispectral light propagation model for subcutaneous veins imaging

In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo metho…

research product

Combining near-infrared illuminants to optimize venous imaging

The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV) catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms, however, this process is to be replaced by an automated system. We previously presented work for localizing near-surface veins via near-infrared (NIR) imaging in combination with structured light ranging for surface mapping and robotic guidance. In this paper, we describe experiments to determine the best NIR wavelengths to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm or wrist surface. For illumination, we empl…

research product

Content based segmentation of patterned wafers

We extend our previous work on the image segmentation of electronic structures on patterned wafers to improve the defect detection process on optical inspection tools. Die-to-die wafer in- spection is based on the comparison of the same area on two neigh- boring dies. The dissimilarities between the images are a result of defects in this area of one of the dies. The noise level can vary from one structure to the other, within the same image. Therefore, seg- mentation is required to create a mask and apply an optimal thresh- old in each region. Contrast variation on the texture can affect the response of the parameters used for the segmentation. We show a method to anticipate these variation…

research product

Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

research product

AUTOMATIC RETINA EXUDATES SEGMENTATION WITHOUT A MANUALLY LABELLED TRAINING SET

International audience; Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy. In a large scale screening environment DME can be assessed by detecting exudates (a type of bright lesions) in fundus images. In this work, two new methods for the detection of exudates are presented. The methods do not require a lesion training set so the need to ground-truth data is avoided with significant time savings and independence from human error. We evaluate our algorithm with a new publicly available dataset from various ethnic groups and levels of DME. Also, we compare our results with two recent exudate segmentation algorithms on the same dataset. In all of …

research product

Near-infrared imaging and structured light ranging for automatic catheter insertion

Vein localization and catheter insertion constitute the first and perhaps most important phase of many medical procedures. Currently, catheterization is performed manually by trained personnel. This process can prove problematic, however, depending upon various physiological factors of the patient. We present in this paper initial work for localizing surface veins via near-infrared (NIR) imaging and structured light ranging. The eventual goal of the system is to serve as the guidance for a fully automatic (i.e., robotic) catheterization device. Our proposed system is based upon near-infrared (NIR) imaging, which has previously been shown effective in enhancing the visibility of surface vein…

research product