0000000000161006

AUTHOR

Shinji Saitoh

0000-0001-6911-3351

showing 2 related works from this author

Imprint switching on human chromosome 15 may involve alternative transcripts of the SNRPN gene

1996

Imprinting on human chromosome 15 is regulated by an imprinting centre, which has been mapped to a 100–kb region including exon 1 of SNRPN. From this region we have identified novel transcripts, which represent alternative transcripts of the SNRPN gene. The novel exons lack protein coding potential and are expressed from the paternal chromosome only. We have also identified intragenic deletions and a point mutation in patients who have Angelman or Prader–Willi syndrome due to a parental imprint switch failure. This suggests that imprint switching on human chromosome 15 may involve alternative SNRPN transcripts.

Geneticscongenital hereditary and neonatal diseases and abnormalitiesChromosome 15ExonAlternative splicingHappy puppet syndromeGeneticsBiologyImprinting (psychology)Genomic imprintingGeneSNRPN GeneNature Genetics
researchProduct

Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury.

2018

Radial glia (RG) are embryonic neural stem cells (NSCs) that produce neuroblasts and provide fibers that act as a scaffold for neuroblast migration during embryonic development. Although they normally disappear soon after birth, here we found that RG fibers can persist in injured neonatal mouse brains and act as a scaffold for postnatal ventricular-subventricular zone (V-SVZ)-derived neuroblasts that migrate to the lesion site. This injury-induced maintenance of RG fibers has a limited time window during post-natal development and promotes directional saltatory movement of neuroblasts via N-cadherin-mediated cell-cell contacts that promote RhoA activation. Transplanting an N-cadherin-contai…

0301 basic medicineRHOAanimal structuresventricular-subventricular zoneBiology03 medical and health sciences0302 clinical medicinegait behaviorNeuroblastCell MovementNeuroblast migrationLateral VentriclesGeneticsmedicineAnimalsreproductive and urinary physiologyN-cadherinNeuronsneuronal migrationneuronal regenerationneonatal brain injuryCadherinEmbryogenesisfungiCell Biologypostnatal neurogenesisRecovery of FunctionCadherinsEmbryonic stem cellNeural stem cellRadial glial cell030104 developmental biologymedicine.anatomical_structurenervous systemAnimals NewbornBrain Injuriesbiology.proteinMolecular MedicinerhoA GTP-Binding ProteinNeuroscienceNeuroglia030217 neurology & neurosurgeryradial glial cellCell stem cell
researchProduct