0000000000161163

AUTHOR

Seraphine V. Wegner

showing 6 related works from this author

Engineering von Proteinen an Oberflächen: Von komplementärer Charakterisierung zu Materialoberflächen mit maßgeschneiderten Funktionen

2018

Chemistry02 engineering and technologyGeneral Medicine010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features

2018

6 p.-4 fig.

02 engineering and technologyEscherichia-coli010402 general chemistryCurvature01 natural sciencesBiochemistryCatalysisQuantitative Biology::Subcellular ProcessesColloid and Surface ChemistryNanosensorSpectroscopyPlasmonPhospholipidsHydrophobic residuesPlasmonic nanoparticlesChemistryScatteringSensorsGeneral ChemistryBinding021001 nanoscience & nanotechnology0104 chemical sciencesMembraneMembrane curvatureChemical physics0210 nano-technology
researchProduct

Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions

2018

Abstract Once materials come into contact with a biological fluid containing proteins, proteins are generally—whether desired or not—attracted by the material's surface and adsorb onto it. The aim of this Review is to give an overview of the most commonly used characterization methods employed to gain a better understanding of the adsorption processes on either planar or curved surfaces. We continue to illustrate the benefit of combining different methods to different surface geometries of the material. The thus obtained insight ideally paves the way for engineering functional materials that interact with proteins in a predetermined manner.

Surface (mathematics)Protein FoldingMaterials scienceSurface PropertiesengineeringReviewsNanotechnology02 engineering and technologyReview010402 general chemistryProtein Engineering01 natural sciencesCatalysisBiological fluidTheranostic NanomedicineNanomaterialsinterfacesAdsorptionPlanarCharacterization methodscharacterizationnanomaterialsDrug CarriersProteinsGeneral Chemistry021001 nanoscience & nanotechnologyprotein adsorption0104 chemical sciencesCharacterization (materials science)NanostructuresProtein Corona0210 nano-technologyProtein adsorptionProtein BindingAngewandte Chemie (International Ed. in English)
researchProduct

Rational Design of Thermoresponsive Microgel Templates with Polydopamine Surface Coating for Microtissue Applications.

2021

Functional microgels provide a versatile basis for synthetic in vitro platforms as alternatives to animal experiments. The tuning of the physical, chemical, and biological properties of synthetic microgels can be achieved by blending suitable polymers and formulating them such to reflect the heterogenous and complex nature of biological tissues. Based on this premise, this paper introduces the development of volume-switchable core-shell microgels as 3D templates to enable cell growth for microtissue applications, using a systematic approach to tune the microgel properties based on a deep conceptual and practical understanding. Microscopic microgel design, such as the tailoring of the microg…

540 Chemistry and allied sciencesMaterials scienceIndolesPolymers and PlasticsPolymersMicrofluidicsBioengineeringNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsBiological propertyddc:570Materials ChemistryAnimalsNanoscopic scalechemistry.chemical_classificationMicrogelsRational designPolymer021001 nanoscience & nanotechnology0104 chemical sciencesSurface coatingTemplatechemistry540 ChemieSurface modification0210 nano-technologyGelsBiotechnologyMacromolecular bioscience
researchProduct

Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing.

2020

Durable and biocompatible superhydrophobic surfaces are of significant potential use in biomedical applications. Here, a nonfluorinated, elastic, superhydrophobic film that can be used for medical wound dressings to enhance their hemostasis function is introduced. The film is formed by titanium dioxide nanoparticles, which are chemically crosslinked in a poly(dimethylsiloxane) (PDMS) matrix. The PDMS crosslinks result in large strain elasticity of the film, so that it conforms to deformations of the substrate. The photocatalytic activity of the titanium dioxide provides surfaces with both self-cleaning and antibacterial properties. Facile coating of conventional wound dressings is demonstra…

Materials scienceLightSurface PropertiesComposite filmBiocompatible Materialsmacromolecular substances02 engineering and technologySubstrate (printing)engineering.material010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundCoatingMaterials TestingEscherichia coliHumansGeneral Materials ScienceComposite materialElasticity (economics)Escherichia coli InfectionsTitaniumHemostasisMechanical Engineeringtechnology industry and agriculture021001 nanoscience & nanotechnologyBiocompatible materialBandagesElasticity0104 chemical sciencesAnti-Bacterial AgentschemistryMechanics of MaterialsTitanium dioxidePhotocatalysisengineeringNanoparticles0210 nano-technologyScience technology and societyHydrophobic and Hydrophilic InteractionsAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Conformational dynamics of a single protein monitored for 24 hours at video rate

2018

We use plasmon rulers to follow the conformational dynamics of a single protein for up to 24 h at a video rate. The plasmon ruler consists of two gold nanospheres connected by a single protein linker. In our experiment, we follow the dynamics of the molecular chaperone heat shock protein 90 (Hsp90), which is known to show “open” and “closed” conformations. Our measurements confirm the previously known conformational dynamics with transition times in the second to minute time scale and reveals new dynamics on the time scale of minutes to hours. Plasmon rulers thus extend the observation bandwidth 3–4 orders of magnitude with respect to single-molecule fluorescence resonance energy transfer a…

0301 basic medicineLetterProtein ConformationMolecular ConformationFOS: Physical sciencesHsp90Bioengineeringsingle molecule02 engineering and technology7. Clean energyQuantitative Biology - Quantitative Methods03 medical and health sciencesMolecular dynamicsFluorescence Resonance Energy TransferNanotechnologyGeneral Materials ScienceHSP90 Heat-Shock ProteinsPhysics - Biological PhysicsQuantitative Methods (q-bio.QM)PlasmonPhysicsVideo rateMechanical EngineeringProtein dynamics92Biomolecules (q-bio.BM)General ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsGold nanospheres030104 developmental biologyFörster resonance energy transferQuantitative Biology - BiomoleculesBiological Physics (physics.bio-ph)Chemical physicsFOS: Biological sciencesprotein dynamicsPlasmon rulernonergodicityGold0210 nano-technologyLinker
researchProduct