0000000000161878

AUTHOR

Salvatore Zammito

Hot-electron noise suppression in n-Si via the Hall effect

We investigate how hot-electron fluctuations in n-type Si are affected by the presence of an intense (static) magnetic field in a Hall geometry. By using the Monte Carlo method, we find that the known Hall-effect-induced redistribution of electrons among valleys can suppress electron fluctuations with a simultaneous enhancement of the drift velocity. We investigate how hot-electron fluctuations in n-type Si are affected by the presence of an intense (static) magnetic field in a Hall geometry. By using the Monte Carlo method, we find that the known Hall-effect-induced redistribution of electrons among valleys can suppress electron fluctuations with a simultaneous enhancement of the drift vel…

research product

Monte Carlo analysis of polymer translocation with deterministic and noisy electric fields

AbstractPolymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluct…

research product