0000000000162428

AUTHOR

M. Matranga

showing 14 related works from this author

Evidence of a non-conservative mass transfer for XTE J0929-314

2017

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: individual: XTE J0929-314AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityPulsarMillisecond pulsar0103 physical sciencesX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicGalactic planeOrbital periodX-rays: binarieStars: neutronGalaxyNeutron starSpace and Planetary Scienceindividual: XTE J0929-314; Stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

An XMM-Newton and INTEGRAL view on the hard state of EXO 1745-248 during its 2015 outburst

2017

CONTEXT - Transient low-mass X-ray binaries (LMXBs) often show outbursts lasting typically a few-weeks and characterized by a high X-ray luminosity ($L_{x} \approx 10^{36}-10^{38}$ erg/sec), while for most of the time they are found in X-ray quiescence ($L_X\approx10^{31} -10^{33}$ erg/sec). EXO 1745-248 is one of them. AIMS - The broad-band coverage, and the sensitivity of instrument on board of {\xmm} and {\igr}, offers the opportunity to characterize the hard X-ray spectrum during {\exo} outburst. METHODS - In this paper we report on quasi-simultaneous {\xmm} and {\igr} observations of the X-ray transient {\exo} located in the globular cluster Terzan 5, performed ten days after the begin…

PhotonX-rays: BinarieAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesTechniques: SpectroscopicAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsneutron; Techniques: Spectroscopic; X-rays: Binaries; X-rays: Bursts; X-rays: Individuals: EXO 1745-248; Astronomy and Astrophysics; Space and Planetary Science [Stars]01 natural sciencesIonization0103 physical sciencesX-rays: BurstAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusAstronomy and AstrophysicStars: neutronNeutron starSpace and Planetary ScienceGlobular clusterElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaX-rays: Individuals: EXO 1745-248Doppler broadening
researchProduct

Study of the reflection spectrum of the LMXB 4U 1702-429

2016

The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $\sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{\circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A bro…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineAccretion accretion diskSettore FIS/05 - Astronomia E AstrofisicaIonization0103 physical sciencesStars: individual: 4U 1702-429Emission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsindividual: 4U 1702-429; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Stars]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieAccretion (astrophysics)Stars: neutronNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

EBIT diagnostics using X-ray spectra of highly ionized Ne

2003

We have carried out a detailed analysis of highly ionized neon spectra collected at the NIST EBIT using an NTD germanium X-ray microcalorimeter developed at the Harvard-Smithsonian Center for Astrophysics [Nucl. Instr. and Meth. A 444 (2000) 156]. Our attention was focused especially on the Ne IX He-like triplet to check electron density diagnostics through the intercombination/forbidden line ratio. We have investigated possible effects of the ion dynamics on the plasma emission line intensities, looking at the dependence of the count-rate and the charge state distribution on the electron beam energy and current. The temperature and spatial distribution of the neon ions, and hence the overl…

X-ray spectraNuclear and High Energy PhysicsElectron densityEBITChemistrySurfaces Coatings and Filmchemistry.chemical_elementFizikai tudományokSurfaces and InterfacesPlasmaIonNeonSettore FIS/05 - Astronomia E AstrofisicaTermészettudományokIonizationAstrophysical plasmaPhysics::Atomic PhysicsEmission spectrumAtomic physicsIonization of atomForbidden mechanismInstrumentationExcitation
researchProduct

Timing of the accreting millisecond pulsar SAX J1748.9-2021 during its 2015 outburst

2016

We report on the timing analysis of the 2015 outburst of the intermittent accreting millisecond X-ray pulsar SAX J1748.9-2021 observed on March 4 by the X-ray satellite XMM-Newton. By phase-connecting the time of arrivals of the observed pulses, we derived the best-fit orbital solution for the 2015 outburst. We investigated the energy pulse profile dependence finding that the pulse fractional amplitude increases with energy while no significant time lags are detected. Moreover, we investigated the previous outbursts from this source, finding previously undetected pulsations in some intervals during the 2010 outburst of the source. Comparing the updated set of orbital parameters, in particul…

PhysicsOrbital elementsHigh Energy Astrophysical Phenomena (astro-ph.HE)Millisecondneutron; X-rays: binaries; Space and Planetary Science; Astronomy and Astrophysics [Accretion accretion disc; Stars]010308 nuclear & particles physicsGravitational waveAstrophysics::High Energy Astrophysical PhenomenaAstronomyLagrangian pointFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsOrbital periodX-rays: binarie01 natural sciencesStars: neutronAmplitudePulsarSpace and Planetary ScienceMillisecond pulsar0103 physical sciencesAccretion accretion discAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

Updating the orbital ephemeris of the dipping source XB 1254-690 and the distance to the source

2017

XB 1254-690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply for the first time an orbital timing technique to XB 1254-690, using the arrival times of the dips present in the light curves that have been collected during 26 years of X-ray pointed observations performed from different space missions. We estimate the dip arrival times using a statistical method that wei…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsStar (graph theory)Ephemeris01 natural sciencesstars: neutron0103 physical sciencesX-rays: star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsstars: individual (XB 1254690)Astronomy and AstrophysicsQuadratic functionAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieAstrometry and celestial mechanics: ephemerideNeutron starSpace and Planetary Scienceephemerides; stars: individual (XB 1254690); stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Astrometry and celestial mechanics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

2015

We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering …

Astrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaAccretion accretion diskAstrophysics::Solar and Stellar AstrophysicsAbsorption (logic)Continuum (set theory)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: magnetic fieldStars: individual: X1822-371Astronomy and AstrophysicsRadiusAstronomy and AstrophysicX-rays: binarieInterstellar mediumNeutron starSpace and Planetary ScienceEddington luminositysymbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

New orbital ephemerides for the dipping source 4U 1323-619: Constraining the distance to the source

2016

4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quad…

neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619 [stars]010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesLuminositySettore FIS/05 - Astronomia E Astrofisica0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)stars: neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619Astronomy and AstrophysicsLight curveOrbital periodGalaxyNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct

GRO J1744-28: an intermediate B-field pulsar in a low mass X-ray binary

2015

The bursting pulsar, GRO J1744-28, went again in outburst after $\sim$18 years of quiescence in mid-January 2014. We studied the broad-band, persistent, X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost at the peak of the outburst, and from a close INTEGRAL observation, performed 3 days later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex continuum shape that cannot be modelled with standard high-mass X-ray pulsar models, nor by two-components models. We observe broadband and peaked residuals from 4 to 15 keV, and we propose a self-consistent interpretation of these residuals, assuming they are produced by cyclotron absorption features and b…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: individual: GRO J1744-28 -X-rays: binarieLine: identificationAstrophysics::High Energy Astrophysical PhenomenaCyclotronX-ray binaryFOS: Physical sciencesLine: formationAstronomy and AstrophysicsAstrophysicsX-rays: generalMagnetic fieldlaw.inventionSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary SciencelawIonizationHarmonicsThermalAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

A possible solution of the puzzling variation of the orbital period of MXB 1659-298

2017

MXB 1659-298 is a transient neutron star Low-Mass X-ray binary system that shows eclipses with a periodicity of 7.1 hr. The source went to outburst in August 2015 after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years obtained combining the eight eclipse arrival times present in literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of $2.31 \pm 0.02$ yr is required. We infer a binary orbital period of $P=7.1161099(3)$ hr and an orbital period derivative of $\dot{P}=-8.5(…

Star (game theory)FOS: Physical sciencesX-rays: starsAstrophysicsEphemeris01 natural sciencesJovianstars: neutronSettore FIS/05 - Astronomia E Astrofisicastars: individual: MXB 1659-2980103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsBinary system010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsbinaries: eclipsingAstronomyAstronomy and AstrophysicsCoupling (probability)Orbital periodX-rays: binarieNeutron stareclipsing; stars: individual: MXB 1659-298; stars: neutron; X-rays: binaries; X-rays: stars [ephemerides; binaries]Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsephemerideAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Signature of the presence of a third body orbiting around XB 1916-053

2015

The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M$_{\odot}$). The orbital period derivative of the source was estimated to be $1.5(3) \times 10^{-11}$ s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadra…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsElliptic orbitStar (game theory)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsQuadratic functionQuadratic form (statistics)Astronomy and AstrophysicOrbital periodEphemerideX-rays: binarieStars: neutronNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceStars: individual: XB 1916-053X-rays: starAstrophysics::Earth and Planetary AstrophysicsEccentricity (mathematics)Low MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

2015

Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these feat…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomyAstronomy and AstrophysicsSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Scienceformation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: general [line]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHumanitiesAstrophysics::Galaxy Astrophysics
researchProduct

A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Serpens X-1

2017

Context. High-resolution X-ray spectra of neutron star low-mass X-ray binaries (LMXBs) in the energy range 6.4-6.97 keV are often characterized by the presence of K alpha transition features of iron at different ionization stages. Since these lines are thought to originate by reflection of the primary Comptonization spectrum over the accretion disk, the study of these features allows us to investigate the structure of the accretion flow close to the central source. Thus, the study of these features gives us important physical information on the system parameters and geometry. Ser X-1 is a well studied LMXB that clearly shows a broad iron line. Several attempts to fit this feature as a smear…

PhysicsLine-of-sight010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)Astronomy and AstrophysicsContext (language use)RadiusAstrophysicsX-rays: general01 natural sciencesX-rays: binarieSpectral linestars: neutronQuality (physics)Reflection (mathematics)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Science0103 physical sciencesstars: individual: Serpens X-1formation; line: identification; stars: individual: Serpens X-1; stars: neutron; X-rays: binaries; X-rays: general [line]line: formation010303 astronomy & astrophysicsline: identificationLine (formation)
researchProduct

A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Ser~X-1

2017

Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical Phenomena
researchProduct