0000000000164189

AUTHOR

Stefanie Klassen

Origin of Ubiquitous Stripes at the Graphite–Water Interface

The investigation of solid-liquid interfaces is pivotal for understanding processes like wetting, corrosion, and mineral dissolution and growth. The graphite-water interface constitutes a prime example for studying the water structure at a seemingly hydrophobic surface. Surprisingly, in a large number of atomic force microscopy (AFM) experiments, well-ordered stripes have been observed at the graphite-water interface. Although many groups have reported on the observation of stripes at this interface, fundamental properties and, in particular, the origin of the stripes are still under debate. Proposed origins include contamination, interplanar stacking of graphene layers, formation of methan…

research product

Chemical Identification at the Solid–Liquid Interface

Solid-liquid interfaces are decisive for a wide range of natural and technological processes, including fields as diverse as geochemistry and environmental science as well as catalysis and corrosion protection. Dynamic atomic force microscopy nowadays provides unparalleled structural insights into solid-liquid interfaces, including the solvation structure above the surface. In contrast, chemical identification of individual interfacial atoms still remains a considerable challenge. So far, an identification of chemically alike atoms in a surface alloy has only been demonstrated under well-controlled ultrahigh vacuum conditions. In liquids, the recent advent of three-dimensional force mapping…

research product

Does the Structural Water within Gypsum Remain Crystalline at the Aqueous Interface?

research product

Charge compensation by long-period reconstruction in strongly polar lithium niobate surfaces

The microscopic structure of the polar (000$\overline{1}$) and (0001) surfaces of lithium niobate is investigated by atomic-resolution frequency modulation atomic force microscopy and first-principles calculations. It is found that the surface reconstructs at annealing temperatures sufficiently high to drive off external adsorbates. In particular a ($\sqrt{7}\ifmmode\times\else\texttimes\fi{}\sqrt{7}$)$R$19.1${}^{\ensuremath{\circ}}$ reconstruction is found for the (000$\overline{1}$) surface. Density-functional theory calculations show that---apart from the $(\sqrt{7}\ifmmode\times\else\texttimes\fi{}\sqrt{7})$---a series of adatom-induced surface reconstructions exist that lower the surfa…

research product

PAA-PAMPS Copolymers as an Efficient Tool to Control CaCO3 Scale Formation

Scale formation, the deposition of certain minerals such as CaCO3, MgCO3, and CaSO4 center dot 2H(2)O in industrial facilities and household devices, leads to reduced efficiency or severe damage. Therefore, incrustation is a major problem in everyday life. In recent years, double hydrophilic block copolymers (DHBCs) have been the focus of interest in academia with regard to their antiscaling potential. In this work, we synthesized well-defined blocklike PAA-PAMPS copolymers consisting of acrylic acid (AA) and 2-acrylamido-2-methyl-propane sulfonate (AMPS) units in a one-step reaction by RAFT polymerization. The derived copolymers had dispersities of 1.3 and below. The copolymers have then b…

research product

How deprotonation changes molecular self-assembly – an AFM study in liquid environment

We study the influence of Alizarin Red S deprotonation on molecular self-assembly at the solid-liquid interface of the natural cleavage plane of calcite immersed in aqueous solution. To elucidate the adsorption details, we perform pH dependent high-resolution atomic force microscopy measurements. When Alizarin Red S is deposited onto calcite(10.4) in a liquid environment at an acidic pH of 5, weakly bound, ordered islands with a (3 x 3) superstructure are observed. A sharp structural transition is revealed when increasing the pH above 8. Above this pH, stable needle-like structures oriented along the [01.0] direction form on the surface. Comparing these results with potentiometric titration…

research product

Molecular Self-Assembly Versus Surface Restructuring During Calcite Dissolution.

Organic additives are known to alter the mineral-water interface in various ways. On the one hand, organic molecules can self assemble into ordered structures wetting the surface. On the other hand, their presence can affect the interfacial morphology, referred to as surface restructuring. Here, we investigate the impact, of a class of calcium-complexing azo dyes on the dissolution of calcite (10.4) using high-resolution atomic force microscopy operated in aqueous solution, with a focus on the two constitutional isomers Eriochrome Black T and Eriochrome Black A. A very pronounced surface restructuring is observed in the presence of the dye solution, irrespective of the specific dye used and…

research product

Atomic-resolution imaging of the polar (0001¯) surface of LiNbO3in aqueous solution by frequency modulation atomic force microscopy

S. Rode,1 R. Holscher,2 S. Sanna,2 S. Klassen,1 K. Kobayashi,3 H. Yamada,3 W. G. Schmidt,2 and A. Kuhnle1,* 1Institut fur Physikalische Chemie, Fachbereich Chemie, Johannes Gutenberg-Universitat Mainz, Jakob-Welder-Weg 11, 55099 Mainz, Germany 2Lehrstuhl fur Theoretische Physik, Universitat Paderborn, 33095 Paderborn, Germany 3Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan (Received 31 March 2012; revised manuscript received 12 June 2012; published 29 August 2012)

research product

Three-dimensional solvation structure of ethanol on carbonate minerals

Calcite and magnesite are important mineral constituents of the earth’s crust. In aqueous environments, these carbonates typically expose their most stable cleavage plane, the (10.4) surface. It is known that these surfaces interact with a large variety of organic molecules, which can result in surface restructuring. This process is decisive for the formation of biominerals. With the development of 3D atomic force microscopy (AFM) it is now possible to image solid–liquid interfaces with unprecedented molecular resolution. However, the majority of 3D AFM studies have been focused on the arrangement of water at carbonate surfaces. Here, we present an analysis of the assembly of ethanol – an o…

research product

Push‐Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light‐Emitting Electrochemical Cells

Light-emitting electrochemical cells (LECs) with a simple device structure were prepared by using heteroleptic bis(tridentate) ruthenium(II) complexes [1](PF6)(2)-[3](PF6)(2) as emitters. The push-pull substitution shifts the emission energy to low energy, into the NIR region. The devices emit deep red light up to a maximum emission wavelength of 755 nm [CIE (International Commission on Illumination) coordinates: x = 0.731, y = 0.269 for [3](PF6)(2)], which, to the best of our knowledge, is the lowest emission energy for LECs containing bis(tridentate) ruthenium(II) complexes. A device structure of ITO/PEDOT:PSS/ruthenium(II) complex/Ag was used, and the thickness of the emitting layer was …

research product

Structure-Dependent Dissolution and Restructuring of Calcite Surfaces by Organophosphonates

Organophosphonates are well-known to strongly interact with the surfaces of various minerals, such as brucite, gypsum, and barite. In this work, we study the influence of six systematically varied organophosphonate molecules (tetraphosphonates and diphosphonates) on the dissolution process of the (10.4) surface of calcite. In order to pursue a systematic study, we have selected organophosphonates that exhibit similar structural features, but also systematic architectural differences. The effect of this class of additives on the dissolution process of the calcite (10.4) surface is evaluated using in situ dynamic atomic force microscopy. For all of the six organophosphonate derivatives, we ob…

research product

Where Is the Most Hydrophobic Region? Benzopurpurine Self-Assembly at the Calcite–Water Interface

Control of molecular self-assembly at solid–liquid interfaces is challenging due to the complex interplay between molecule–molecule, molecule–surface, molecule–solvent, surface–solvent, and solvent–solvent interactions. Here, we use in-situ dynamic atomic force microscopy to study the self-assembly of Benzopurpurine 4B into oblong islands with a highly ordered inner structure yet incommensurate with the underlying calcite (10.4) surface. Molecular dynamics and free energy calculations provide insights by showing that Benzopurpurine 4B molecules do not anchor to the surface directly but instead assemble on top of the second hydration layer. This seemingly peculiar behavior was then rationali…

research product

Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory

The ${\text{LiNbO}}_{3}$(2$\overline{1}\overline{1}0$) surface, commonly referred to as X-cut, is investigated by means of atomic force microscopy and first-principles calculations. Atomically resolved atomic force microscopy images show geometrical patterns not compatible with truncated bulk terminations. Fast Fourier transformation of the real-space images shows an oblique surface unit cell with lattice parameters of $a=0.75\ifmmode\pm\else\textpm\fi{}0.02$ nm, $b=0.54\ifmmode\pm\else\textpm\fi{}0.02$ nm, and $\ensuremath{\alpha}=94.{8}^{\ensuremath{\circ}}$. Comparing these experimental results with the theoretical models of stable surface terminations provides clear evidence for the for…

research product