0000000000165116
AUTHOR
Nicolao Fornengo
Probing neutrino non-standard interactions with atmospheric neutrino data
We have reconsidered the atmospheric neutrino anomaly in light of the laetst data from Super-Kamiokande contained events and from Super-Kamiokande and MACRO up-going muons. We have reanalysed the proposed solution to the atmospheric neutrino anomaly in terms of non-standard neutrino-matter interactions (NSI) as well as the standard nu_mu -> nu_tau oscillations (OSC). Our statistical analysis shows that a pure NSI mechanism is now ruled out at 99%, while the standard nu_mu -> nu_tau OSC mechanism provides a quite remarkably good description of the anomaly. We therefore study an extended mechanism of neutrino propagation which combines both oscillation and non-standard neutrino-matter i…
On the interpretation of the atmospheric neutrino data in terms of flavor changing neutrino interactions
Flavour changing (FC) neutrino-matter interactions have been proposed as a solution to the atmospheric neutrino anomaly. Here we perform the analysis of the full set of the recent 52 kTy Super-Kamiokande atmospheric neutrino data, including the zenith angle distribution of the contained events as well as the higher energy upward-going stopping and through-going muon events. Our results show that the FC mechanism can describe the full data sample with a chi^2_{min}=44/(33 d.o.f) which is acceptable at the 90% confidence level. The combined analysis confines the amount of FC to be either close to maximal or to the level of about (10-50)%.
Minimal Supergravity Scalar Neutrino Dark Matter and Inverse Seesaw Neutrino Masses
We show that within the inverse seesaw mechanism for generating neutrino masses minimal supergravity is more likely to have a sneutrino as the lightest superparticle than the conventional neutralino. We also demonstrate that such schemes naturally reconcile the small neutrino masses with the correct relic sneutrino dark matter abundance and accessible direct detection rates in nuclear recoil experiments.
Possibility of a dark matter interpretation for the excess in isotropic radio emission reported by ARCADE.
The ARCADE 2 Collaboration has recently measured an isotropic radio emission which is significantly brighter than the expected contributions from known extra-galactic sources. The simplest explanation of such excess involves a ``new'' population of unresolved sources which become the most numerous at very low (observationally unreached) brightness. We investigate this scenario in terms of synchrotron radiation induced by weakly interacting massive particle (WIMP) annihilations or decays in extra-galactic halos. Intriguingly, for light-mass WIMPs with a thermal annihilation cross section, the level of expected radio emission matches the ARCADE observations.
Cosmological radio emission induced by WIMP Dark Matter
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJa…
Extending the DAMA annual-modulation region by inclusion of the uncertainties in astrophysical velocities
The original annual-modulation region, singled out by the DAMA/NaI experiment for direct detection of WIMPs, is extended by taking into account the uncertainties in the galactic astrophysical velocities. Also the effect due to a possible bulk rotation for the dark matter halo is considered. We find that the range for the WIMP mass becomes 30 GeV < m_chi < 130 GeV at 1-sigma C.L. with a further extension in the upper bound, when a possible bulk rotation of the dark matter halo is taken into account. We show that the DAMA results, when interpreted in the framework of the Minimal Supersymmetric extension of the Standard Model, are consistent with a relic neutralino as a dominant componen…
Interpretation of AMS-02 electrons and positrons data
We perform a combined analysis of the recent AMS-02 data on electrons, positrons, electrons plus positrons and positron fraction, in a self-consistent framework where we realize a theoretical modeling of all the astrophysical components that can contribute to the observed fluxes in the whole energy range. The primary electron contribution is modeled through the sum of an average flux from distant sources and the fluxes from the local supernova remnants in the Green catalog. The secondary electron and positron fluxes originate from interactions on the interstellar medium of primary cosmic rays, for which we derive a novel determination by using AMS-02 proton and helium data. Primary positron…
Galactic synchrotron emission from WIMPs at radio frequencies
Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter annihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with "thermal" annihilation cross-sections, i.e. (\sigma v) = 3 x 10^-26 cm^3/s, and masses M_DM < 10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribu…
Neutrino oscillation effects on the indirect signal of neutralino dark matter from the Earth core
We investigate the effect induced by neutrino oscillation on the dark matter indirect detection signal which consists in a muon neutrino flux produced by neutralino annihilation in the Earth core. We consider the neutrino oscillation parameters relevant to the atmosferic neutrino deficit, both in the νμ → ντ and νμ → νs cases.