6533b823fe1ef96bd127f5d2

RESEARCH PRODUCT

Possibility of a dark matter interpretation for the excess in isotropic radio emission reported by ARCADE.

Marco RegisMarco RegisNicolao FornengoNicolao FornengoRoberto A. LinerosMarco Taoso

subject

Physicseducation.field_of_study010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaDark matterPopulationMassive particleGeneral Physics and AstronomyAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesDark matter haloWIMPWeakly interacting massive particles0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsHaloeducation010303 astronomy & astrophysicsLight dark matterAstrophysics::Galaxy Astrophysics

description

The ARCADE 2 Collaboration has recently measured an isotropic radio emission which is significantly brighter than the expected contributions from known extra-galactic sources. The simplest explanation of such excess involves a ``new'' population of unresolved sources which become the most numerous at very low (observationally unreached) brightness. We investigate this scenario in terms of synchrotron radiation induced by weakly interacting massive particle (WIMP) annihilations or decays in extra-galactic halos. Intriguingly, for light-mass WIMPs with a thermal annihilation cross section, the level of expected radio emission matches the ARCADE observations.

10.1103/physrevlett.107.271302https://pubmed.ncbi.nlm.nih.gov/22243302