Third virial coefficient for 4-arm and 6-arm star polymers
We discuss the computation of the third virial coefficient in polymer systems, focusing on an additional contribution absent in the case of monoatomic fluids. We determine the interpenetration ratio and several quantities that involve the third virial coefficient for star polymers with 4 and 6 arms in the good-solvent regime, in the limit of a large degree of polymerization.
Towards the Quantitative Prediction of the Phase Behavior of Polymer Solutions by Computer Simulation
The phase diagram of polymer solutions (cf. e.g. alkanes dissolved in supercritical carbon dioxide) is complicated, since there are four control parameters (temperature, pressure, monomer volume fraction, chain length of the polymer) and due to the interplay of liquid-vapor transitions and fluid-fluid unmixing. As a result I very intricate phase diagram topologies can result. An attempt to develop coarse-1 grained models that can deal with this task will be described. As usual, the polymers I will be modelled as off-lattice bead-spring chains, where several chemical monomers I are integrated into one effective bond, torsional degrees of freedom being dis-I regarded. But also a coarse-graine…
Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-grained model: the case of carbon dioxide.
Monte Carlo simulations are presented for a coarse-grained model of real quadrupolar fluids. Molecules are represented by particles interacting with Lennard-Jones forces plus the thermally averaged quadrupole-quadrupole interaction. The properties discussed include the vapor-liquid coexistence curve, the vapor pressure along coexistence, and the surface tension. The full isotherms are also accessible over a wide range of temperatures and densities. It is shown that the critical parameters (critical temperature, density, and pressure) depend almost linearly on a quadrupolar parameter q=Q(*4)T*, where Q* is the reduced quadrupole moment of the molecule and T* the reduced temperature. The mode…
Spherically averaged versus angle-dependent interactions in quadrupolar fluids
Employing simplified models in computer simulation is on the one hand often enforced by computer time limitations but on the other hand it offers insights into the molecular properties determining a given physical phenomenon. We employ this strategy to the determination of the phase behaviour of quadrupolar fluids, where we study the influence of omitting angular degrees of freedom of molecules via an effective spherically symmetric potential obtained from a perturbative expansion. Comparing the liquid-vapor coexistence curve, vapor pressure at coexistence, interfacial tension between the coexisting phases, etc., as obtained from both the models with the full quadrupolar interactions and th…
Coarse-graining dipolar interactions in simple fluids and polymer solutions: Monte Carlo studies of the phase behavior
In this paper we investigate the phase diagram of pure dipolar substances and their mixtures with short alkanes, using grand canonical Monte Carlo simulations of simplified coarse-grained models. Recently, an efficient coarse-grained model for simple quadrupolar molecules, based on a Lennard-Jones (LJ) interaction plus a spherically averaged quadrupolar potential, has been shown to be successful in predicting single-component and mixture phase diagrams. Motivated by these results, we investigate the phase diagrams of simple dipolar molecules (and their mixtures with alkanes) using a spherically averaged potential. First, we test the model on pure components. A generalized (state-dependent) …
Computer Simulations and Coarse-Grained Molecular Models Predicting the Equation of State of Polymer Solutions
Monte Carlo and molecular dynamics simulations are, in principle, powerful tools for carrying out the basic task of statistical thermodynamics, namely the prediction of macroscopic properties of matter from suitable models of effective interactions between atoms and molecules. The state of the art of this approach is reviewed, with an emphasis on solutions of rather short polymer chains (such as alkanes) in various solvents. Several methods of constructing coarse-grained models of the simple bead–spring type will be mentioned, using input either from atomistic models (considering polybutadiene as an example) or from experiment. Also, the need to have corresponding coarse-grained models of t…
Structure and pair correlations of a simple coarse grained model for supercritical carbon dioxide
A recently introduced coarse-grained pair potential for carbon dioxide molecules is used to compute structural properties in the supercritical region near the critical point, applying Monte Carlo simulations. In this model, molecules are described as point particles, interacting with Lennard-Jones (LJ) forces and a (isotropically averaged) quadrupole–quadrupole potential, the LJ parameters being chosen such that gratifying agreement with the experimental phase diagram near the critical point is obtained. It is shown that the model gives also a reasonable account of the pair correlation function, although in the nearest neighbour shell some systematic discrepancies between the model predicti…