0000000000165615
AUTHOR
Jelena Sharipova
Putative role of nitric oxide synthase isoforms in the changes of nitric oxide concentration in rat brain cortex and cerebellum following sevoflurane and isoflurane anaesthesia.
We have previously observed an increase in nitric oxide (NO) content in rat brain cortex following halothane, sevoflurane or isoflurane anaesthesia. This study was undertaken in order to determine whether isoform-specific nitric oxide synthase (NOS) inhibitors and inducers could modify these increases in NO contents. Rats were subjected to isoflurane and sevoflurane anaesthesia with concomitant administration of neuronal nitric oxide synthase (nNOS) inhibitor 7-Nitro-indazole (7-NI), inducible nitric oxide synthase (iNOS) inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT) or lipopolysaccharide. NO concentration in different organs was measured by electron paramagnetic resonance (E…
Effects of Kaempferol and Myricetin on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Rats
Abstract: When administered as drugs or consumed as food components, polyphenolic compounds synthesized in plants interfere with intracellular signal transduction pathways, including pathways of nitric oxide synthase expression. However, effects of these compounds in vivo do not always correlate with nitric oxide synthase-inhibiting activities revealed in experiments with cultured cells. The initial goal of this work was to compare effects of flavonoids kaempferol and myricetin on inducible nitric oxide synthase mRNA and protein expression monitored by real-time RT-PCR and immunohistochemistry and to evaluate the impact of these effects on nitric oxide production in rat organs measured by …
Influence of metformin on GLUT1 gene and protein expression in rat streptozotocindiabetes mellitusmodel
Metformin improves hyperglycaemia via mechanisms which include activation of AMP-activated protein kinase (AMPK). Recent findings indicate that some metabolic actions of metformin occur also by AMPK-independent mechanisms.To study the action of metformin on expression of GLUT1 glucose transporter in rat streptozotocin model of diabetes mellitus.Streptozotocin-induced rats were treated with metformin while monitoring parameters of carbohydrate and lipid metabolism. GLUT1 mRNA and protein expression in kidneys, heart, liver and muscles were studied by means of real time quantitative RT-PCR and immunohistochemistry correspondingly.Metformin treatment decreased glucose concentration, glycated h…
Effects of Lycopene, Indole-3-Carbinol, and Luteolin on Nitric Oxide Production and iNOS Expression are Organ-Specific in Rats
Effects of Lycopene, Indole-3-Carbinol, and Luteolin on Nitric Oxide Production and iNOS Expression are Organ-Specific in RatsNatural compounds are known to modify NO content in tissues; however, the biological activity of polyphenol-rich food often does not correspond to the effects of individual polyphenols on NO synthase activity. The aim of this study was to see how natural compounds luteolin, indole-3-carbinol, and lycopene modify NO production in rat tissues and change the expression of the iNOS gene and protein. Indole-3-carbinol produced multiple effects on the NO level; it significantly decreased NO concentration in blood, lungs, and skeletal muscles and increased it in the liver. …
Effects of Indole-3-Carbinol and Flavonoids Administered Separately and in Combination on Nitric Oxide Production and iNOS Expression in Rats
Beneficial effects of natural compounds are often attributed to modulation of NO production; however effects produced by plant extracts do not correlate with effects of purified components. The goal of our work was to study ability of flavonoids and indole-3-carbinol, as well as their combinations to modify NO production, iNOS gene and protein expression in rat tissues. Baicalein and luteolin decreased NO concentration in both intact and LPS-treated animals. Baicalein decreased iNOS gene expression. Luteolin decreased NO production in the liver and heart and number of iNOS-positive cells in the liver of LPS-treated animals. Combination of the two substances did not decrease the NO synthesis…
Correction of glycaemia and GLUT1 level by mildronate in rat streptozotocin diabetes mellitus model
Anti-ischaemic drug mildronate suppresses fatty acid metabolism and increases glucose utilization in myocardium. It was proposed that it could produce a favourable effect on metabolic parameters and glucose transport in diabetic animals. Rats with streptozotocin diabetes mellitus were treated with mildronate (100 mg/kg daily, per os, 6 weeks). Therapeutic effect of mildronate was monitored by measuring animal weight, concentrations of blood glucose, insulin, blood triglycerides, free fatty acids, blood ketone bodies and cholesterol, glycated haemoglobin per cent (HbA1c%) and glucose tolerance. GLUT1 mRNA and protein expression in kidneys, heart, liver and muscles were studied by means of re…
Comparison of the Effects of Glibenclamide on Metabolic Parameters, GLUT1 Expression, and Liver Injury in Rats With Severe and Mild Streptozotocin-Induced Diabetes Mellitus
Background and Objective. Glucose transport via GLUT1 protein could be one of additional mechanisms of the antidiabetic action of sulfonylureas. Here, the GLUT1 gene and the protein expression was studied in rats in the course of severe and mild streptozotocin-induced diabetes mellitus and under glibenclamide treatment. Material and Methods. Severe and mild diabetes mellitus was induced using different streptozotocin doses and standard or high fat chow. Rats were treated with glibenclamide (2 mg/kg daily, per os for 6 weeks). The therapeutic effect of glibenclamide was monitored by measuring several metabolic parameters. The GLUT1 mRNA and the protein expression in the kidneys, heart, and l…