0000000000167040

AUTHOR

Sergii I. Shylin

showing 62 related works from this author

Pyridazine-Supported Polymeric Cyanometallates with Spin Transitions

2019

Heterometallic cyano-bridged spin-crossover complexes form a large family of switchable compounds with different structural motives and diverse transition characteristics. Here we report on the hysteretic water-dependent spin transitions found in the family of [Fe(pyridazine)2M(CN)4] frameworks (M = Ni, Pd, Pt). The structure of three new spin-crossover compounds is built of cyanometallic layers supported by pyridazine ligands. The frameworks contain water guest molecules that can be removed upon heating. Spin transition was found in both hydrated and dehydrated compounds, while the removal of water stimulated a complete spin state switch. Mössbauer spectroscopy revealed two different …

Condensed matter physics010405 organic chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryPyridazinechemistry.chemical_compoundchemistrySpin crossoverMössbauer spectroscopy0210 nano-technologySpin (physics)European Journal of Inorganic Chemistry
researchProduct

Water-soluble and redox-responsive hyperbranched polyether copolymers based on ferrocenyl glycidyl ether

2015

Water-soluble copolymers of ferrocenyl glycidyl ether (fcGE) and glycidol were prepared via anionic ring-opening multibranching polymerization (ROMBP). The resulting hyperbranched materials with molecular weights (Mn) of 3500 to 12 300 g mol−1 and relatively narrow molecular weight distributions (Mw/Mn = 1.40–1.69) exhibit both temperature- as well as redox-responsive behavior, which was studied via turbidity measurements. The cloud point temperatures (Tc) were adjusted between 45 and 60 °C through variation of the fcGE comonomer content. Additionally, these Tcs can be increased by the addition of an oxidizing agent. The extent of oxidation of the materials was quantified by Mosbauer spectr…

Polymers and PlasticsComonomerOrganic ChemistrySize-exclusion chromatographyGlycidolBioengineeringBiochemistrychemistry.chemical_compoundDifferential scanning calorimetryPolymerizationchemistryPolymer chemistryCopolymerCyclic voltammetrySpectroscopyPolymer Chemistry
researchProduct

Chiral spin crossover nanoparticles and gels with switchable circular dichroism

2015

Spin crossover complexes represent spectacular examples of molecular switchable materials. We describe a new approach towards homochiral coordination nanoparticles of [Fe(NH2trz)3](L-CSA)2 (NH2trz = 4-amino-1,2,4-triazole, L-CSA = L-camphorsulfonate) that display an abrupt switch of chiral properties associated with a cooperative spin transition. This is an original method that generates stable and additive-free colloidal solutions of nanoparticles with a spin transition around room temperature. The introduction of a chiral anion to the coordination framework makes these nanoparticles display specific chiro-optical (circular dichroism) properties that are different in high and low spin stat…

Circular dichroismMaterials scienceBistabilitySpin statesChemical physicsSpin crossoverMaterials ChemistrySupramolecular chemistrySpin transitionNanoparticleNanotechnologyGeneral ChemistryIonJournal of Materials Chemistry C
researchProduct

High temperature spin crossover in [Fe(pyrazine){Ag(CN) 2 } 2 ] and its solvate

2016

A high temperature spin crossover (Tup = 367 K) was detected in a metal–organic framework [Fe(pz){Ag(CN)2}2]·MeCN (pz = pyrazine). Upon heating, this solvate released acetonitrile guest molecules, which slightly shifted the transition temperature of the complex (Tup = 370 K and Tdown = 356 K).

Pyrazine010405 organic chemistryTransition temperatureGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysis0104 chemical sciences3. Good healthCrystallographychemistry.chemical_compoundchemistrySpin crossoverMaterials ChemistryMoleculeAcetonitrileNew Journal of Chemistry
researchProduct

Hofmann-Like Frameworks Fe(2-methylpyrazine)n[M(CN)2]2 (M = Au, Ag) : Spin-Crossover Defined by the Precious Metal

2020

Hofmann-like cyanometalates constitute a large class of spin-crossover iron(II) complexes with variable switching properties. However, it is not yet clearly understood how the temperature and cooperativity of a spin transition are influenced by their structure. In this paper, we report the synthesis and crystal structures of the metal–organic coordination polymers {FeII(Mepz)[AuI(CN)2]2} ([Au]) and {FeII(Mepz)2[AgI(CN)2]2} ([Ag]), where Mepz = 2-methylpyrazine, along with characterization of their spin-state behavior by variable-temperature SQUID magnetometry and Mössbauer spectroscopy. The compounds are built of cyanoheterometallic layers, which are pillared by the bridging Mepz…

chemistry.chemical_classificationLarge classOorganisk kemi010405 organic chemistryIronSpin transitionCooperativityPolymerCrystal structureAtmospheric temperature range010402 general chemistrySpin crossover01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistrySpin crossovermagnetismMössbauer spectroscopyPhysical and Theoretical ChemistryMOF
researchProduct

Synthesis of Nanocrystals and Particle Size Effects Studies on the Thermally Induced Spin Transition of the Model Spin Crossover Compound [Fe(phen)2(…

2015

Surfactant-free nanocrystals of the model spin-crossover compound [Fe(phen)2(NCS)2] (phen: 1,10-phenanthroline) have been synthesized applying the reverse micelle technique. The morphology of the nanocrystals, characterized by scanning electronic microscopy, corresponds to rhombohedric platelets with dimensions ranging from 203 × 203 × 106 nm to 142 × 142 × 74 nm. Variation of the concentration of the Fe(BF4)2·6H2O salt in the synthesis has been found to have little influence on the crystallite size. In contrast, the solvent-surfactant ratio (ω) is critical for a good particle growth. The spin transition of the nanocrystals has been characterized by magnetic susceptibility measurements and …

Inorganic ChemistryNuclear magnetic resonanceNanocrystalSpin crossoverChemistryMössbauer spectroscopySpin transitionAnalytical chemistryCrystalliteParticle sizePhysical and Theoretical ChemistryMicelleMagnetic susceptibilityInorganic chemistry
researchProduct

Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III)

2013

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2], the Fe(III) ion is coordinated by four thio-cyanate N atoms and two pyridine N atoms in a trans arrangement, forming an FeN6 polyhedron with a slightly distorted octa-hedral geometry. Charge balance is achieved by one pyridinium cation bound to the complex anion via N-H⋯S hydrogen bonding. The asymmetric unit consists of one Fe(III) cation, four thio-cyanate anions, two coordinated pyridine mol-ecules and one pyridinium cation. The structure exhibits π-π inter-actions between pyridine rings [centroid-centroid distances = 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å]. The N atom and a neighboring C atom of the pyridinium cation are statistically d…

Metal-Organic PapersbiologyHydrogen bondThio-General ChemistryCondensed Matter Physicsbiology.organism_classificationIonchemistry.chemical_compoundCrystallographychemistryPyridineAtomTetraGeneral Materials SciencePyridiniumActa Crystallographica Section E Structure Reports Online
researchProduct

Intercalation effect on hyperfine parameters of Fe in FeSe superconductor with Tc = 42 K

2015

57Fe-Mossbauer spectra of superconducting beta-FeSe, the Li/NH3 intercalate product and a subsequent sample of this intercalate treated with moist He gas have been measured in temperature range 4.7 - 290 K. A correlation is established between hyperfine parameters and critical temperature Tc in these phases. A strong increase of isomer shift upon intercalation is explained by a charge transfer from the Li/NH3 intercalate to the FeSe layers resulting in an increase of Tc up to 42 K. A significant decrease of the quadrupole splitting above 240 K has been attributed to diffusive motion of Li+ ions within the interlamellar space.

SuperconductivitySuperconductivity (cond-mat.supr-con)Materials scienceCondensed Matter - SuperconductivityIntercalation (chemistry)Analytical chemistryGeneral Physics and AstronomyFOS: Physical sciencesQuadrupole splittingAtmospheric temperature rangeHyperfine structureSpectral lineIon
researchProduct

Iron (II) isothiocyanate complexes with substituted pyrazines: Experimental and theoretical views on their electronic structure

2015

Abstract Synthesis, structural, magnetic, Mossbauer and thermal studies of isothiocyanate iron (II) complexes with substituted pyrazines (iodo-, bromo- and amino-derivatives) are discussed here. Complexes with iodo- and bromo-derivatives were found to have the composition [Fe(Ipz)2(SCN)2(H2O)2]·2Ipz (1) and [Fe(Brpz)2(SCN)2(H2O)2]·2Brpz (2), whereas in the case of amino-functionalized pyrazine the formation of [Fe(NH2pz)4(SCN)2] (3) was observed. 3D organization of the molecular complexes is stabilized within different hydrogen, halogen and lone pair–π interactions. Spin state of iron (II) ions in 1–3 was determined as high spin by Mossbauer and magnetic measurements. DFT calculations for t…

complexesSpin statesPyrazineHydrogenspin stateMössbauer spectroscopyInorganic chemistrychemistry.chemical_elementElectronic structure3. Good healthInorganic Chemistrychemistry.chemical_compoundCrystallographyironchemistryIsothiocyanateMössbauer spectroscopyHalogenMaterials ChemistrypyrazinePhysical and Theoretical Chemistryta116Lone pairPolyhedron
researchProduct

Iron Oxide Superparticles with Enhanced MRI Performance by Solution Phase Epitaxial Growth

2018

Organized three-dimensional (3D) nanomaterial architectures are promising candidates for applications in optoelectronics, catalysis, or theranostics owing to their anisotropy and advanced structural features that allow tailoring their physical and chemical properties. The synthesis of such complex but well-organized nanomaterials is difficult because the interplay of interfacial strain and facet-specific reactivity must be considered. Especially the magnetic anisotropy with controlled size and morphology plays a decisive role for applications like magnetic resonance imaging (MRI) and advanced data storage. We present a solution phase seed mediated synthesis of colloidal, well dispersible ir…

Materials scienceGeneral Chemical EngineeringIron oxideMaghemiteNanotechnology02 engineering and technologyGeneral ChemistryHematiteengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanomaterialschemistry.chemical_compoundMagnetic anisotropychemistryTransmission electron microscopyvisual_artMaterials Chemistryvisual_art.visual_art_mediumengineeringNanorod0210 nano-technologyAnisotropyChemistry of Materials
researchProduct

From Single Molecules to Nanostructured Functional Materials: Formation of a Magnetic Foam Catalyzed by Pd@FexO Heterodimers

2017

Multicomponent nanostructures containing purely organic or inorganic as well as hybrid organic–inorganic components connected through a solid interface are, unlike conventional spherical particles, able to combine different or even incompatible properties within a single entity. They are multifunctional and resemble molecular amphiphiles, like surfactants or block copolymers, which makes them attractive for the self-assembly of complex structures, drug delivery, bioimaging, or catalysis. We have synthesized Pd@FexO heterodimer nanoparticles (NPs) to fabricate a macroporous, hydrophobic, magnetically active, three-dimensional (3D), and template-free hybrid foam capable of repeatedly separati…

NanostructureMaterials scienceHydrosilylationNucleationNanoparticleNanochemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesNanomaterial-based catalyst0104 chemical scienceschemistry.chemical_compoundChemical engineeringchemistryAmphiphileGeneral Materials Science0210 nano-technologyHybrid materialACS Applied Nano Materials
researchProduct

Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III)

2013

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2], the FeIII ion is coordinated by four thiocyanate N atoms and two pyridine N atoms in a trans arrangement, forming an FeN6 polyhedron with a slightly distorted octahedral geometry. Charge balance is achieved by one pyridinium cation bound to the complex anion via N—H...S hydrogen bonding. The asymmetric unit consists of one FeIII cation, four thiocyanate anions, two coordinated pyridine molecules and one pyridinium cation. The structure exhibits π–π interactions between pyridine rings [centroid–centroid distances = 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å]. The N atom and a neighboring C…

CrystallographyQD901-999Acta Crystallographica Section E
researchProduct

The surface chemistry of iron oxide nanocrystals: surface reduction of γ-Fe2O3 to Fe3O4 by redox-active catechol surface ligands

2018

The effect of surface functionalization on the structural and magnetic properties of catechol-functionalized iron oxide magnetic (γ-Fe2O3) nanocrystals was investigated. γ-Fe2O3 nanocrystals (NCs) were synthesized from iron acetyl acetonate in phenyl ether with 1,2-tetradecanediol, oleic acid, and oleylamine. X-ray powder diffraction in combination with Mossbauer spectroscopy revealed the presence of γ-Fe2O3 (maghemite) particles only. Replacement of oleic acid (OA) with catechol-type 3,4-dihydroxyhydrocinnamic acid (DHCA) or polydentate polydopamine acrylate (PDAm) surface ligands leads to a pronounced change of the magnetic behavior of the γ-Fe2O3 nanocrystals and separated them into two …

Materials scienceInorganic chemistryIron oxideMaghemite02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundMagnetizationchemistryNanocrystalOleylamineMössbauer spectroscopyMaterials ChemistryengineeringSurface modification0210 nano-technologyMagnetiteJournal of Materials Chemistry C
researchProduct

Understanding the Stability and Recrystallization Behavior of Amorphous Zinc Phosphate

2021

Zinc phosphate, an important pigment in phosphate conversion coatings, forms protective films on rubbing surfaces. We have simulated the underlying reactions under shear by ball-milling zinc phosphate and monitored the reaction of hopeite (Zn3(PO4)2·4H2O) and the retarded recrystallization of the amorphous reaction product by powder X-ray diffraction (PXRD) and quantitative infrared (IR) spectroscopy. Abrasion of stainless steel was simulated by addition of pure 57Fe. The results provide insight into the chemistry of phosphate conversion coatings or during battery cycling of metal phosphates and give theoretical guidance for the preparation of amorphous phosphates. Thermal analysis revealed…

inorganic chemicalsRecrystallization (geology)Materials science02 engineering and technology010402 general chemistry01 natural sciencesMetalchemistry.chemical_compoundImpurityPhysical and Theoretical Chemistrytechnology industry and agricultureZinc phosphate021001 nanoscience & nanotechnologyPhosphate0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidGeneral EnergyChemical engineeringchemistryConversion coatingvisual_artvisual_art.visual_art_medium0210 nano-technologyPowder diffractionThe Journal of Physical Chemistry C
researchProduct

Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

2017

In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation…

ClathrochelateScienceInorganic chemistryFormaldehydeSolid-stateGeneral Physics and Astronomy010402 general chemistryDFT01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyInorganic Chemistrychemistry.chemical_compoundhigh-valent ironNative metalOorganisk kemiMultidisciplinaryAqueous solution010405 organic chemistryQGeneral ChemistryDecompositionCoordination chemistry3. Good health0104 chemical scienceschemistryCageEarth (classical element)Nature Communications
researchProduct

Cooperative High-Temperature Spin Crossover Accompanied by a Highly Anisotropic Structural Distortion

2016

Spin transitions are a spectacular example of molecular switching that can provoke extreme electronic and structural reorganizations in coordination compounds. A new 3D cyanoheterometallic framework, [Fe(pz)(Au(CN)2)2], has been synthesized in which a highly cooperative spin crossover has been observed at 367 and 349 K in heating and cooling modes, respectively. Mössbauer spectroscopy revealed a complete transition between the diamagnetic and paramagnetic states of the iron centres. The low-spin-to-high-spin transition induced a drastic structural distortion involving a large one-directional expansion (ca. 10.6%) and contraction (ca. 9.6%) of the lattice. Negative thermal expansion along th…

chemistry.chemical_classificationCondensed matter physicsCooperative effects010405 organic chemistryChemistryTransition temperatureIronMetal-organic frameworks010402 general chemistrySpin crossover01 natural sciences0104 chemical sciencesCoordination complexInorganic ChemistryParamagnetismNuclear magnetic resonanceNegative thermal expansionSpin crossoverQD156Mössbauer spectroscopyMagnetic propertiesQD473DiamagnetismAnisotropy
researchProduct

Enantioselective Guest Effect on the Spin State of a Chiral Coordination Framework

2015

The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin-sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2-butanol, and these solvates with (R)- and (S)-alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both fr…

Spin statesChemistryStereochemistryCoordination polymerOrganic ChemistryEnantioselective synthesisSpin transitionGeneral ChemistryCatalysisCrystallographychemistry.chemical_compoundSpin crossoverDiamagnetismMoleculeChirality (chemistry)Chemistry - A European Journal
researchProduct

Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III) -pyrazine-2-carbonitrile-pyridine (1/4/1)

2013

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2]·4C5H3N3·C5H5N, the Fe(III) ion is located on an inversion centre and is six-coordinated by four N atoms of the thio-cyanate ligands and two pyridine N atoms in a trans arrangement, forming a slightly distorted octa-hedral geometry. A half-occupied H atom attached to a pyridinium cation forms an N-H⋯N hydrogen bond with a centrosymmetrically-related pyridine unit. Four pyrazine-2-carbo-nitrile mol-ecules crystallize per complex anion. In the crystal, π-π stacking inter-actions are present [centroid-centroid distances = 3.6220 (9), 3.6930 (9), 3.5532 (9), 3.5803 (9) and 3.5458 (8) Å].

Metal-Organic PapersPyrazinebiologyNitrileHydrogen bondStackingThio-General ChemistryCondensed Matter PhysicsBioinformaticsbiology.organism_classificationMedicinal chemistrychemistry.chemical_compoundchemistryPyridineTetraGeneral Materials SciencePyridiniumta116Acta Crystallographica Section E : Structure Reports Online
researchProduct

Pressure effect on superconductivity in FeSe0.5Te0.5

2016

Due to the simple layered structure, isostructural FeSe and FeSe0.5Te0.5 are clue compounds for understanding the principal mechanisms of superconductivity in the family of Fe-based superconductors. High-pressure magnetic, structural and Mossbauer studies have been performed on single-crystalline samples of superconducting FeSe0.5Te0.5 with Tc = 13.5 K. Susceptibility data have revealed a strong increase of Tc up to 19.5 K for pressures up to 1.3 GPa, followed by a plateau in the Tc(p) dependence up to 5.0 GPa. Further pressure increase leads to a disappearance of the superconducting state around 7.0 GPa. X-ray diffraction and Mossbauer studies explain this fact by a tetragonal-to-hexagonal…

DiffractionSuperconductivityMaterials scienceCondensed matter physics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsPlateau (mathematics)01 natural sciencesElectronic Optical and Magnetic MaterialsLayered structurePhase (matter)0103 physical sciencesMössbauer spectroscopyPressure increaseIsostructural010306 general physics0210 nano-technologyphysica status solidi (b)
researchProduct

Co–Co and Co–Fe cyano-bridged pentanuclear clusters based on a methylpyrazinyl-diamine tetradentate ligand: spin crossover and metal substitution eff…

2017

A pentanuclear [CoII3CoIII2] cluster complex has been developed by a solvothermal synthesis. Its highly stable metal-mixed Fe–Co derivatives display robust spin crossover (T1/2 = 268 K) controlled by the degree of substitution.

010405 organic chemistrySolvothermal synthesisSubstitution (logic)General Chemistry010402 general chemistryCondensed Matter PhysicsPhotochemistry01 natural sciences0104 chemical sciencesMetalCrystallographychemistry.chemical_compoundDegree of substitutionchemistrySpin crossovervisual_artDiaminevisual_art.visual_art_mediumCluster (physics)General Materials ScienceTetradentate ligandCrystEngComm
researchProduct

Spin-State-Dependent Redox-Catalytic Activity of a Switchable Iron(II) Complex

2017

The spin state of catalytically active 3d metal centers plays a significant role for their activity in enzymatic processes and organometallic catalysis. Here we report on the catalytic activity of a Fe(II) coordination compound that can undergo a cooperative switch between low-spin (LS) and high-spin (HS) states. Catalytic measurements within 291 - 318 K temperature region reveal a drastic drop of the catalytic activity upon conversion of metallic centers from the LS to the HS form. For a thermoswitchable [Fe(NH2trz)3]Br2 complex (Tup = 305 K), an activation energy is found to be considerably lower for the LS state (158 kJ mol-1) comparing to the HS state (305 kJ mol-1). Mossbauer analysis …

chemistry.chemical_classificationSpin statesInorganic chemistry02 engineering and technologyActivation energy010402 general chemistry021001 nanoscience & nanotechnologyHeterogeneous catalysis01 natural sciencesRedox0104 chemical sciencesCoordination complexCatalysisInorganic ChemistryMetalCrystallographychemistrySpin crossovervisual_artvisual_art.visual_art_medium0210 nano-technologyEuropean Journal of Inorganic Chemistry
researchProduct

Spin Crossover in Fe(II)–M(II) Cyanoheterobimetallic Frameworks (M = Ni, Pd, Pt) with 2-Substituted Pyrazines

2016

Discovery of spin-crossover (SCO) behavior in the family of Fe(II)-based Hofmann clathrates has led to a "new rush" in the field of bistable molecular materials. To date this class of SCO complexes is represented by several dozens of individual compounds, and areas of their potential application steadily increase. Starting from Fe(2+), square planar tetracyanometalates M(II)(CN)4(2-) (M(II) = Ni, Pd, Pt) and 2-substituted pyrazines Xpz (X = Cl, Me, I) as coligands we obtained a series of nine new Hofmann clathrate-like coordination frameworks. X-ray diffraction reveals that in these complexes Fe(II) ion has a pseudo-octahedral coordination environment supported by four μ4-tetracyanometallat…

tetracyanometalates010405 organic chemistryChemistryStereochemistrypyrazines010402 general chemistry01 natural sciences0104 chemical sciences3. Good healthIonInorganic Chemistrycoordination polymersCrystallographySpin crossoverspin-crossoverMoleculePhysical and Theoretical ChemistryMolecular materialsta116Inorganic Chemistry
researchProduct

Pressure-induced magnetic collapse and metallization of TlFe1.6Se2

2017

The crystal structure, magnetic ordering, and electrical resistivity of $\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}$ were studied at high pressures. Below $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$, $\mathrm{TlF}{\mathrm{e}}_{1.6}\mathrm{S}{\mathrm{e}}_{2}$ is an antiferromagnetically ordered semiconductor with a $\mathrm{ThC}{\mathrm{r}}_{2}\mathrm{S}{\mathrm{i}}_{2}$-type structure. The insulator-to-metal transformation observed at a pressure of $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$ is accompanied by a loss of magnetic ordering and an isostructural phase transition. In the pressure range $\ensuremath{\sim}7.5\text{--}11\phantom{\rule{…

PhysicsSuperconductivityPhase transitionCondensed matter physicsCollapse (topology)02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesPressure rangeElectrical resistivity and conductivity0103 physical sciencesIsostructural010306 general physics0210 nano-technologyPhysical Review B
researchProduct

Solvent-dependent SCO Behavior of Dinuclear Iron(II) Complexes with a 1,3,4-Thiadiazole Bridging Ligand

2016

Two dinuclear iron(II) complexes [Fe2(μ-L)2]X4*4DMF (X = BF4(-) (1·4DMF) and ClO4(-) (2·4DMF)) with a 1,3,4-thiadiazole bridging ligand have been synthesized and show a very distinct solvent-depending SCO behavior. The complexes represent new solvatomorphs of the first dinuclear iron(II) complexes with the ligand L (2,5-bis[(2-pyridylmethyl)amino]methyl-1,3,4-thiadiazole). The incorporated lattice DMF molecules directly affect the spin state of these complexes. This behavior reveals a structural insight into the role of the solvent molecules on the spin transition.

Spin states010405 organic chemistryChemistryStereochemistrySpin transitionBridging ligand010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistrySolventCrystallographyMoleculePhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Pd@Fe2O3 Superparticles with Enhanced Peroxidase Activity by Solution Phase Epitaxial Growth

2017

Compared to conventional deposition techniques for the epitaxial growth of metal oxide structures on a bulk metal substrate, wet-chemical synthesis based on a dispersible template offers advantages such as low cost, high throughput, and the capability to prepare metal/metal oxide nanostructures with controllable size and morphology. However, the synthesis of such organized multicomponent architectures is difficult because the size and morphology of the components are dictated by the interplay of interfacial strain and facet-specific reactivity. Here we show that solution-processable two-dimensional Pd nanotetrahedra and nanoplates can be used to direct the epitaxial growth of γ-Fe2O3 nanoro…

NanostructureMaterials scienceGeneral Chemical EngineeringOxideNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyEpitaxy01 natural sciences0104 chemical sciencesNanomaterialsMetalchemistry.chemical_compoundchemistryPhase (matter)visual_artMaterials Chemistryvisual_art.visual_art_mediumReactivity (chemistry)Nanorod0210 nano-technologyChemistry of Materials
researchProduct

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.

2015

A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of …

SuperconductivityMultidisciplinaryRoom-temperature superconductorCondensed matter physicsHydrogenChemistryTransition temperaturechemistry.chemical_elementMineralogyMetallic hydrogenMagnetic susceptibilityElectrical resistivity and conductivityCondensed Matter::SuperconductivityDensity of statesNature
researchProduct

Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea

2015

Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and ar…

subsurface sedimentscandidate division JS1SMTiron reductionmethanogensNorth Seaanaerobic oxidation of methaneMicrobiologyANMEOriginal ResearchFrontiers in Microbiology
researchProduct

Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III) -pyrazine-2-carbonitrile-pyridine (1/4/1)

2013

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2]- 4C5H3N3C5H5N, the FeIII ion is located on an inversion centre and is six-coordinated by four N atoms of the thiocyanate ligands and two pyridine N atoms in a trans arrangement, forming a slightly distorted octahedral geometry. A half-occupied H atom attached to a pyridinium cation forms an N—HN hydrogen bond with a centrosymmetrically-related pyridine unit. Four pyrazine-2-carbonitrile molecules crystallize per complex anion. In the crystal, – stacking interactions are present [centroid–centroid distances = 3.6220 (9), 3.6930 (9), 3.5532 (9), 3.5803 (9) and 3.5458 (8) A˚ ]. peerReviewed

Pyridinium
researchProduct

Pressure effect on superconductivity in FeSe0.5Te0.5

2016

Due to the simple layered structure, isostructural FeSe and FeSe0.5Te0.5 are clue compounds for understanding the principal mechanisms of superconductivity in the family of Fe-based superconductors. High-pressure magnetic, structural and M\"ossbauer studies have been performed on single-crystalline samples of superconducting FeSe0.5Te0.5 with Tc = 13.5 K. Susceptibility data have revealed a strong increase of Tc up to 19.5 K for pressures up to 1.3 GPa, followed by a plateau in the Tc(p) dependence up to 5.0 GPa. Further pressure increase leads to a disappearance of the superconducting state around 7.0 GPa. X-ray diffraction and M\"ossbauer studies explain this fact by a tetragonal-to-hexag…

Superconductivity (cond-mat.supr-con)Condensed Matter - Materials ScienceCondensed Matter - SuperconductivityMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences
researchProduct

CCDC 1422402: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422398: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422396: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422397: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1480686: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu2-Cyano)-aqua-(2-iodopyrazine)-iron-palladium]Experimental 3D Coordinates
researchProduct

CCDC 1400635: Experimental Crystal Structure Determination

2017

Related Article: Stefania Tomyn, Sergii I. Shylin, Dmytro Bykov, Vadim Ksenofontov, Elzbieta Gumienna-Kontecka, Volodymyr Bon, Igor O. Fritsky|2017|Nat.Commun.|8|14099|doi:10.1038/ncomms14099

Space GroupCrystallographybis(tetra-n-butylammonium) (1347810121316171922-dodeca-azatetracyclo[8.8.4.1317.1812]tetracosane-5614152021-hexonato)-iron(iv) chloroform solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1986756: Experimental Crystal Structure Determination

2020

Related Article: Sergii I. Shylin, Olesia I. Kucheriv, Sergiu Shova, Vadim Ksenofontov, Wolfgang Tremel, Il’ya A. Gural’skiy|2020|Inorg.Chem.|59|6541|doi:10.1021/acs.inorgchem.0c00627

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(2-methylpyrazine)-iron(ii)-di-silver(i)]Experimental 3D Coordinates
researchProduct

CCDC 1838583: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-nickel monohydrate)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480684: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu2-Cyano-CN)-(mu2-2-iodopyrazine)-aqua-iron-nickel)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1422405: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422399: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1448813: Experimental Crystal Structure Determination

2016

Related Article: Christian F. Herold, Sergii I. Shylin, and Eva Rentschler|2016|Inorg.Chem.|55|6414|doi:10.1021/acs.inorgchem.6b00163

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-1-(pyridin-2-yl)-N-((5-((((pyridin-2-yl)methyl)amino)methyl)-134-thiadiazol-2-yl)methyl)methanamine)-di-iron tetrakis(perchlorate) NN-dimethylformamide solvateExperimental 3D Coordinates
researchProduct

CCDC 1569643: Experimental Crystal Structure Determination

2017

Related Article: Bin Fei, Jian Zhou, Zheng Yan, Sergii I. Shylin, Vadim Ksenofontov, Il'ya A. Gural'skiy, Xin Bao|2017|CrystEngComm|19|7079|doi:10.1039/C7CE01826F

hexakis(mu-cyano)-tris(N1N2-dimethyl-N1N2-bis[(pyrazin-2-yl)methyl]ethane-12-diamine)-hexacyano-tri-cobalt-di-ironSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480687: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographyCrystal Systemcatena-[octakis(mu2-Cyano)-diaqua-bis(2-methylpyrazine)-di-iron-di-platinum 2-methylpyrazine unknown solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1422403: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1838587: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-platinum monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1478973: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Bohdan O. Golub, Vadim Ksenofontov, Igor O. Fritsky, Wolfgang Tremel|2016|New J.Chem.|40|9012|doi:10.1039/C6NJ01472K

Space GroupCrystallographycatena-(tetrakis(mu-cyano)-(mu-pyrazine)-iron-di-silver acetonitrile solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1838584: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-nickel monohydrate)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1400636: Experimental Crystal Structure Determination

2017

Related Article: Stefania Tomyn, Sergii I. Shylin, Dmytro Bykov, Vadim Ksenofontov, Elzbieta Gumienna-Kontecka, Volodymyr Bon, Igor O. Fritsky|2017|Nat.Commun.|8|14099|doi:10.1038/ncomms14099

Space GroupCrystallographyCrystal Systembis(tetraphenylarsonium) (1347810121316171922-dodeca-azatetracyclo[8.8.4.1317.1812]tetracosane-5614152021-hexonato)-iron(iv) hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1569642: Experimental Crystal Structure Determination

2017

Related Article: Bin Fei, Jian Zhou, Zheng Yan, Sergii I. Shylin, Vadim Ksenofontov, Il'ya A. Gural'skiy, Xin Bao|2017|CrystEngComm|19|7079|doi:10.1039/C7CE01826F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu-cyano)-tris(N1N2-dimethyl-N1N2-bis[(pyrazin-2-yl)methyl]ethane-12-diamine)-hexacyano-penta-cobaltExperimental 3D Coordinates
researchProduct

CCDC 1838585: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-palladium monohydrate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1838588: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-platinum monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1422404: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1458636: Experimental Crystal Structure Determination

2017

Related Article: Stefania Tomyn, Sergii I. Shylin, Dmytro Bykov, Vadim Ksenofontov, Elzbieta Gumienna-Kontecka, Volodymyr Bon, Igor O. Fritsky|2017|Nat.Commun.|8|14099|doi:10.1038/ncomms14099

Space GroupCrystallographycatena-((mu-1347810121316171922-dodeca-azatetracyclo[8.8.4.1317.1812]tetracosane-5614152021-hexone)-diaqua-calcium-iron isopropanol solvate tetrahydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1986758: Experimental Crystal Structure Determination

2020

Related Article: Sergii I. Shylin, Olesia I. Kucheriv, Sergiu Shova, Vadim Ksenofontov, Wolfgang Tremel, Il’ya A. Gural’skiy|2020|Inorg.Chem.|59|6541|doi:10.1021/acs.inorgchem.0c00627

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-(2-methylpyrazine)-iron(ii)-di-silver(i)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1838586: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-palladium monohydrate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480685: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographycatena-[tetrakis(mu2-Cyano)-aqua-(2-iodopyrazine)-iron-platinum]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1422400: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1480683: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-bis(2-chloropyrimidine)-iron-nickel)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1569644: Experimental Crystal Structure Determination

2017

Related Article: Bin Fei, Jian Zhou, Zheng Yan, Sergii I. Shylin, Vadim Ksenofontov, Il'ya A. Gural'skiy, Xin Bao|2017|CrystEngComm|19|7079|doi:10.1039/C7CE01826F

hexakis(mu-cyano)-tris(N1N2-dimethyl-N1N2-bis[(pyrazin-2-yl)methyl]ethane-12-diamine)-hexacyano-tri-cobalt-di-ironSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1448812: Experimental Crystal Structure Determination

2016

Related Article: Christian F. Herold, Sergii I. Shylin, and Eva Rentschler|2016|Inorg.Chem.|55|6414|doi:10.1021/acs.inorgchem.6b00163

Space GroupCrystallographyCrystal Systembis(mu-1-(pyridin-2-yl)-N-((5-((((pyridin-2-yl)methyl)amino)methyl)-134-thiadiazol-2-yl)methyl)methanamine)-di-iron tetrakis(tetrafluoroborate) NN-dimethylformamide solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480682: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-bis(2-chloropyrimidine)-iron-nickel)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1422401: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct