0000000000170383
AUTHOR
H. Fonvieille
Real and Virtual Compton Scattering (experiments)
This paper deals with Real and Virtual Compton Scattering off the proton at threshold and the way to deduce information about the nucleon polarizabilities.
Virtual Compton scattering and the generalized polarizabilities of the proton atQ2=0.92and 1.76 GeV2
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P{sub LL}-P{sub TT}/epsilon and P{sub LT}, and the electric and magnetic generalized polarizabilities (GPs) alpha{sub E}(Q{sup 2}) and beta{sub M}(Q{sup 2}) at values of the four-momentum transfer squared Q{sup 2} = 0.92 and 1.76 GeV{sup 2}. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q{sup 2}-…
Measurement of the Generalized Polarizabilities of the Proton at Intermediate $Q^2$
Background: Generalized polarizabilities (GPs) are important observables to describe the nucleon structure, and measurements of these observables are still scarce. Purpose: This paper presents details of a virtual Compton scattering (VCS) experiment, performed at the A1 setup at the Mainz Microtron by studying the $e p \to e p \gamma$ reaction. The article focuses on selected aspects of the analysis. Method: The experiment extracted the $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$ structure functions, as well as the electric and magnetic GPs of the proton, at three new values of the four-momentum transfer squared $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$. Results: We emphasize the importance of the ca…
The first Virtual Compton Scattering experiment at MAMI
Abstract Virtual Compton scattering, i.e. the exclusive reaction γ ∗ p → γ′p′ with γ ∗ denoting a virtual photon, provides new insights on the internal structure of the proton. Below π 0 production threshold, this experiment measures the generalized polarizabilities of the proton as defined by Guichon et al [1], [2] and Drechsel et al [3]. These new electromagnetic observables, functions of Q 2 , enlarge the concept of electric (α0 and magnetic (β) polarizabilities in Real Compton Scattering ( Q 2 =0) [4]. The first VCS experiment [5] of this kind was measured at the three spectrometer facility at the Mainz Microtron MAMI for Q 2 =0.33 GeV 2 and we present in this paper the preliminary resu…
Monte Carlo simulation of virtual Compton scattering below pion threshold
This paper describes the Monte Carlo simulation developed specifically for the VCS experiments below pion threshold that have been performed at MAMI and JLab. This simulation generates events according to the (Bethe-Heitler + Born) cross section behaviour and takes into account all relevant resolution-deteriorating effects. It determines the `effective' solid angle for the various experimental settings which are used for the precise determination of photon electroproduction absolute cross section.
Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly.
A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40 MeV/c^{2} to 300 MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge …
The frontiers of the virtual photons program at MAMI
The most recent results and the future physics program of the high precision electron-scattering experiment at MAMI are briefly outlined. The A1 high-resolution spectrometers facility allows for a unique quality of virtual photon experiments. High precision form factor measurements, few-baryon systems highresolution structure studies and the innovative way in the search of dark photons illustrate the interplay between such diverse fields as precision atomic physics, nuclear astrophysics and astroparticle physics, where hadron physics plays a central and connecting role.
Virtual Compton Scattering and polarizabilities
Abstract Virtual Compton Scattering (VCS) off the proton below pion threshold allows access to generalized polarizabilities of the proton. These observables measure the response of the nucleon to low energy electromagnetic field perturbations. This paper presents a comparison with Real Compton Scattering and also results for the first dedicated VCS experiment performed at the Mainz Microtron MAMI with high resolution spectrometers at Q2 = 0.33 GeV2.
First measurement of proton's charge form factor at very low $Q^2$ with initial state radiation
We report on a new experimental method based on initial-state radiation (ISR) in e-p scattering, in which the radiative tail of the elastic e-p peak contains information on the proton charge form factor ($G_E^p$) at extremely small $Q^2$. The ISR technique was validated in a dedicated experiment using the spectrometers of the A1-Collaboration at the Mainz Microtron (MAMI). This provided first measurements of $G_E^p$ for $0.001\leq Q^2\leq 0.004 (GeV/c)^2$.
Ground-state binding energy of HΛ4 from high-resolution decay-pion spectroscopy
Abstract A systematic study on the Λ ground state binding energy of hyperhydrogen H Λ 4 measured at the Mainz Microtron MAMI is presented. The energy was deduced from the spectroscopy of mono-energetic pions from the two-body decays of hyperfragments, which were produced and stopped in a 9Be target. First data, taken in the year 2012 with a high resolution magnetic spectrometer, demonstrated an almost one order of magnitude higher precision than emulsion data, while being limited by systematic uncertainties. In 2014 an extended measurement campaign was performed with improved control over systematic effects, increasing the yield of hypernuclei and confirming the observation with two indepen…
Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron
A new exclusion limit for the electromagnetic production of a light U(1) gauge boson {\gamma}' decaying to e^+e^- was determined by the A1 Collaboration at the Mainz Microtron. Such light gauge bosons appear in several extensions of the standard model and are also discussed as candidates for the interaction of dark matter with standard model matter. In electron scattering from a heavy nucleus, the existing limits for a narrow state coupling to e^+e^- were reduced by nearly an order of magnitude in the range of the lepton pair mass of 210 MeV/c^2 < m_e^+e^- < 300 MeV/c^2. This experiment demonstrates the potential of high current and high resolution fixed target experiments for the search fo…
High-Precision Determination of the Electric and Magnetic Form Factors of the Proton
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.
Virtual Compton Scattering at MAMI γ*p→ γ1p1
The virtual Compton scattering (VCS) is the electron scattering on a proton which radiates a real photon before being detected. The new observables, called Generalized Polarizabilities (GP), extracted from this VCS at threshold can be understood as the deformation of the charge and current distributions of the proton [1]. These GP are functions of the mass of the virtual photon Q2. In real Compton scattering (Q2 = 0), some polarizabilities of the nucleon are already measured [2]. With the VCS, we will generalize these observables by measuring them at different values of Q2.
Backward electroproduction ofπ0mesons on protons in the region of nucleon resonances at four momentum transfer squaredQ2=1.0GeV2
Exclusive electroproduction of pi{sup 0} mesons on protons in the backward hemisphere has been studied at Q2 = 1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma{sub T} + epsilon sigma{sub L}, sigma{sub TL}, and sigma{sub TT} were separated from the azimuthal distribution and are presented together with the MAID and SAID parameterizations.
New Insight in the $Q^2$-Dependence of Proton Generalized Polarizabilities
Virtual Compton scattering on the proton has been investigated at three yet unexplored values of the four-momentum transfer $Q^2$: 0.10, 0.20 and 0.45 GeV$^2$, at the Mainz Microtron. Fits performed using either the low-energy theorem or dispersion relations allowed the extraction of the structure functions $P_{LL} -P_{TT} / \epsilon$ and $P_{LT}$, as well as the electric and magnetic generalized polarizabilities $\alpha_{E1}(Q^2)$ and $\beta_{M1}(Q^2)$. These new results show a smooth and rapid fall-off of $\alpha_{E1}(Q^2)$, in contrast to previous measurements at $Q^2$ = 0.33 GeV$^2$, and provide for the first time a precise mapping of $\beta_{M1}(Q^2)$ in the low-$Q^2$ region.
Experimental investigations of the hypernucleus $_Λ^4$H
International audience; Negatively charged pions from two-body decays of stopped _Lambda^4H hypernuclei were studied in 2012 at the Mainz Microtron MAMI, Germany. The momenta of the decay-pions were measured with unprecedented precision by using high-resolution magnetic spectrometers. A challenge of the experiment was the tagging of kaons from associated K^+∧ production off a Be target at very forward angles. In the year 2014, this experiment was continued with a better control of the systematic uncertainties, with better suppression of coincident and random background, improved particle identification, and with higher luminosities. Another key point of the progress was the improvemen…
Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles
We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,e'p)\gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,e'p)\gamma$ to H$(e,e'p)\pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data…
Recoil Polarization and Beam-Recoil Double Polarization Measurement ofηElectroproduction on the Proton in the Region of theS11(1535)Resonance
The beam-recoil double polarization P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} and the recoil polarization P{sub y{sup '}} were measured for the first time for the p(e-vector,e{sup '}p-vector){eta} reaction at a four-momentum transfer of Q{sup 2}=0.1 GeV{sup 2}/c{sup 2} and a center of mass production angle of {theta}=120 deg. at the Mainz Microtron MAMI-C. With a center of mass energy range of 1500 MeV<W<1550 MeV the region of the S{sub 11}(1535) and D{sub 13}(1520) resonance was covered. The results are discussed in the framework of a phenomenological isobar model (Eta-MAID). While P{sub x{sup '}}{sup h} and P{sub z{sup '}}{sup h} are in good agreement with the model, P{sub y{sup '…
Vertical Beam Polarization at MAMI
For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry $A_{\mathrm{n}}$, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction $^{12}\mathrm C(\vec e,e')^{12}\mathrm C$. Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has …
The first dedicated Virtual Compton Scattering experiment at MAMI
We measured the absolute cross sections for photon electro-production off the proton, ep to ep gamma , with the high resolution spectrometers at MAMI at momentum transfer q=600 MeV/c and photon polarization epsilon =0.62. We covered the momentum range for the outgoing real photon q'=33/111 MeV/c. From the extracted virtual Compton scattering amplitude we deduce values for two structure functions related to the generalized polarizabilities of the proton.
Virtual compton scattering under π0 threshold at Q2=0.33 GeV2. Preliminary results
We have measured the absolute unpolarized cross sections for photon electro-production off the proton ep → epγ with the Three-Spectrometer-Setup at MAMI at a momentum transfer q=600 MeV/c and a virtual photon polarization ɛ=0.62. The momentum q ′ of the outgoing real photon range from 33 to 111 MeV/c. We extracted two combinations of the recently introduced generalized polarizabilities [1,2].
Measurement of the Neutron Electric to Magnetic Form Factor Ratio atQ2=1.58 GeV2Using the ReactionHe→3(e→,e′n)pp
A measurement of beam helicity asymmetries in the reaction $^{3}\stackrel{\ensuremath{\rightarrow}}{\mathrm{He}}(\stackrel{\ensuremath{\rightarrow}}{e},{e}^{\ensuremath{'}}n)pp$ is performed at the Mainz Microtron in quasielastic kinematics to determine the electric to magnetic form factor ratio of the neutron ${G}_{E}^{n}/{G}_{M}^{n}$ at a four-momentum transfer ${Q}^{2}=1.58\text{ }\text{ }{\mathrm{GeV}}^{2}$. Longitudinally polarized electrons are scattered on a highly polarized $^{3}\mathrm{He}$ gas target. The scattered electrons are detected with a high-resolution magnetic spectrometer, and the ejected neutrons are detected with a dedicated neutron detector composed of scintillator ba…
First Measurement of the $Q^2$ Dependence of the Beam-Normal Single Spin Asymmetry for Elastic Scattering off Carbon
We report on the first Q^{2}-dependent measurement of the beam-normal single spin asymmetry A_{n} in the elastic scattering of 570 MeV vertically polarized electrons off ^{12}C. We cover the Q^{2} range between 0.02 and 0.05 GeV^{2}/c^{2} and determine A_{n} at four different Q^{2} values. The experimental results are compared to a theoretical calculation that relates A_{n} to the imaginary part of the two-photon exchange amplitude. The result emphasizes that the Q^{2} behavior of A_{n} given by the ratio of the Compton to charge form factors cannot be treated independently of the target nucleus.
Deuteron form factor measurements at low momentum transfers
A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q 2 = 0.
Beam-Recoil Polarization Measurement of π0 Electroproduction on the Proton in the Region of the Roper Resonance
The helicity-dependent recoil proton polarizations P_{x}^{'} and P_{z}^{'} as well as the helicity-independent component P_{y} have been measured in the p(e[over →],e^{'}p[over →])π^{0} reaction at four-momentum transfer Q^{2}≃0.1 GeV^{2}, center-of-mass proton emission angle θ_{p}^{*}≃90°, and invariant mass W≃1440 MeV. This first precise measurement of double-polarization observables in the energy domain of the Roper resonance P_{11}(1440) by exploiting recoil polarimetry has allowed for the extraction of its scalar electroexcitation amplitude at an unprecedentedly low value of Q^{2}, establishing a powerful instrument for probing the interplay of quark and meson degrees of freedom in t…
Initial state radiation experiment at MAMI
In an attempt to contribute further insight into the discrepancy between the Lamb shift and elastic scattering determinations of the proton charge radius, a new experiment at MAMI is underway, aimed at measuring proton form-factors at very low momentum transfers by using a new technique based on initial state radiation. This paper reports on the conclusions of the pilot measurement performed in 2010, whose main goal was to check the feasibility of the proposed experiment and to recognize and overcome any obstacles before running the full experiment. The modifications to the experimental apparatus are then explained which significantly improved the quality of data collected in the full scale…
First measurements of Λ and hyperons in elementary electroproduction at MAMI
Abstract Since 2008 the magnetic spectrometer Kaos , dedicated to the detection of charged kaons, is operating at the 1.5 GeV electron beam of MAMI at the Institut fur Kernphysik in Mainz, Germany. The strangeness programme performed in 2008–9 is addressing some important issues in the field of elementary kaon photoelectro-production reactions. The identification of Λ and Σ 0 hyperons in the missing mass spectra from kaon production off a liquid hydrogen target demonstrates the capability of the extended facility to perform strangeness electro-production spectroscopy at low momentum transfers Q 2 0.5 ( GeV / c ) 2 . Systematic uncertainties in the cross-section extraction from the data are …
"Table 1" of "Virtual Compton scattering under pi0 threshold at Q**2 = 0.33-GeV**2: Preliminary results."
No description provided.