0000000000170749

AUTHOR

J. Hueso

Accurate consideration of metal losses at waveguide junctions using admittance and impedance integral equation formulations

[1] At higher frequencies, metal loss effects in passive waveguide components become more pronounced and hazardous. In this paper, we propose two integral equation techniques, based on the generalized admittance and impedance matrices, for the accurate consideration of losses in the metal walls of waveguide junctions. Both techniques have been evaluated in terms of accuracy and numerical efficiency, and conclusions are drawn regarding the best properties of the admittance parameter formulation. Finally, combining such technique with a classical perturbative method for considering propagation losses, we have successfully predicted all loss effects in two real waveguide filters used for comme…

research product

Efficient and Accurate Consideration of Ohmic Losses in Waveguide Diplexers and Multiplexers

The accurate consideration of all ohmic losses effects in waveguide manifold diplexers and multiplexers is rigorously studied in this paper. For such purposes, a full-wave CAD tool based exclusively on modal methods is originally proposed. Proceeding in this very efficient way, losses are precisely considered in all common components of such complex devices, i.e. planar junctions, uniform lines and multi-port circuits implemented in waveguide technology. For verification purposes, we have successfully compared our results for a magic-T junction and a manifold diplexer with experimental and numerical results.

research product

On the Rigorous Calculation of All Ohmic Losses in Rectangular Waveguide Multi-Port Junctions

In this paper, all ohmic losses effects present in rectangular waveguide multi-port junctions are rigorous and efficiently computed. For this purpose, a new formulation based on the theory of cavities, which provides generalized admittance matrix representations for such junctions, is proposed. To validate this theory, we have successfully compared our results with numerical data of a lossy E-plane T-junction and of a hollow waveguide, as well as with experimental measurements of a real H-plane T-junction.

research product