0000000000171923
AUTHOR
D.t. Jost
The new nuclide225U
In the bombardment of a 270μg/cm 2 180Hf target with48 Ca projectiles at a primary beam energy of E/A=4.24 MeV/u the new nuclide225U was produced. The experiment was performed at the velocity filter SHIP. 225U was found to decay by α emission with Eα=(7880 ±20) keV (≈90%), (7830±20) keV (≈10%) and has a half-life ofT 1/2=(80 −20 +40 ms).
An EC-branch in the decay of 27-s 263Db: Evidence for the isotope 263Rf
Summary 27-s 263Db was produced in the 249Bk ( 18O, 4n) reaction at 93 MeV. The activity was transported by a He/KCl-jet to the laboratory where it was collected for 15 min and then subjected to a chemical separation specific for group-4 elements. The activity was dissolved in 0.5 M unbuffered α-HiB and eluted from a cation-exchange column. The effluent was made 9 M in HCl and group-4 tetrachlorides were extracted into TBP/Cyclohexane which was evaporated to dryness on a Ta disc. The Ta discs were assayed for α and SF activity. A SF activity with a half life on the order of 20 min was observed and assigned to the nuclide 263Rf. It is formed by electron-capture decay of 263Db with a decay br…
Miss Piggy, a californium-252 fission fragment source as a generator of short-lived radionuclides
Abstract Carrier-free short-lived nuclides are employed in many different fields of modern nuclear chemistry. The two main production strategies are either thermal neutron-induced fission of 235U or 239Pu at nuclear reactors or spallation neutron sources or charged particle-induced nuclear reactions at accelerator facilities. An alternative method is to use a spontaneously fissioning nuclide. A facility applying this technique (“Miss Piggy”) was built at the University of Berne (Switzerland). Californium-252 (252Cf), which has a 3% fission branch and a half-life of 2.645 a, is used for the production of short-lived fission products that are stopped in an adjacent recoil chamber. Short-lived…
Determination of the partial electron capture- and spontaneous-fission half-lives of254No
The isotope254No was produced in the fusion reaction48Ca +208Pb. Using the velocity filter SHIP and radiochemical techniques it was found that the nuclide254No with a half-life of 55 s decays byα, EC, and spontaneous-fission. Deduced partial half-lives are (61±2) s forα-decay, (550−160+370) s for EC and [2.2−1.0+2.0]×104 s for spontaneous fission.
Chemical investigation of hassium (element 108).
The periodic table provides a classification of the chemical properties of the elements. But for the heaviest elements, the transactinides, this role of the periodic table reaches its limits because increasingly strong relativistic effects on the valence electron shells can induce deviations from known trends in chemical properties. In the case of the first two transactinides, elements 104 and 105, relativistic effects do indeed influence their chemical properties, whereas elements 106 and 107 both behave as expected from their position within the periodic table. Here we report the chemical separation and characterization of only seven detected atoms of element 108 (hassium, Hs), which were…
New nuclideHa263
A new nuclide $^{263}\mathrm{Ha}$ was produced in the bombardment of a $^{249}\mathrm{Bk}$ target with 93-MeV $^{18}\mathrm{O}$ ions. It was detected via spontaneous fission counting and was shown to have a half-life of about 0.5 min. This activity was also separated from the reaction products by automated rapid chemical separations using cation-exchange chromatography in 0.05M \ensuremath{\alpha}-hydroxyisobutyric acid. After chemical separation, $^{263}\mathrm{Ha}$ was found to decay by spontaneous fission (${57}_{\mathrm{\ensuremath{-}}15}^{+13}$%) and by \ensuremath{\alpha} emission (${\mathit{E}}_{\mathrm{\ensuremath{\alpha}}}$=8.35 MeV, 43%) with a half-life of ${27}_{\mathrm{\ensurem…
Gas phase chromatography of halides of elements 104 and 105
On-line isothermal gas phase chromatography was used to study halides of261104 (T1/2=65 s) and262,263105 (T1/2=34 s and 27 s) produced an atom-at-a time via the reactions248Cm(18O, 5n) and249Bk(18O, 5n, 4n), respectively. Using HBr and HCl gas as halogenating agents, we were able to produce volatile bromides and chlorides of the above mentioned elements and study their behavior compared to their lighter homologs in Groups 4 or 5 of the periodic table. Element 104 formed more volatile bromide than its homolog Hf. In contrast, element 105 bromides were found to be less volatile than the bromides of the group 5 elements Nb and Ta. Both 104 and Hf chlorides were observed to be more volatile tha…
Chemical Properties of Element 105 in Aqueous Solution: Halide Complex Formation and Anion Exchange into Triisoctyl Amine
Studies of the halide complexation of element 105 in aqueous solution were performed on 34-s 262Ha produced in the 249Bk(18-O,5n) reaction. The 262Ha was detected by measuring the fission and alpha activities associated with its decay and the alpha decays of its daughter, 4.3-s 258Lr. Time-correlated pairs of parent and daughter alpha particles provided a unique identification of the presence of 262Ha. About 1600 anion exchange separations of 262Ha from HCl and mixed HC1/HF solutions were performed on a one-minute time scale. Reversed-phase micro-chromatographic columns incorporating triisooctyl amine (TIOA) on an inert support were used in the computer-controlled liquid chromatography appa…