0000000000172469
AUTHOR
Isabel Garcı́a
Crystal structure of [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)2]: study of its interaction with DNA and hydrogen peroxide
A new copper complex with N-quinolin-8-yl-p-toulenesulfonamide has been prepared and characterised. The compound crystallises in the triclinic system, space group P1, with a=13.457(3), b=15.067(5), c=18.589(3) A; α=112.05(2), β=93.92(2), γ=108.30(2)° and Z=4. The geometry of the Cu(II) ion is distorted square planar. The N-quinolin-8-yl-p-toulenesulfonamidate anion behaves as a bidentate ligand through the N s u l f o n a m i d a t e and N q u i n o l i n e atoms. The complex does not cleave DNA in the presence of hydrogen peroxide.
Structural characterisation and nuclease activity of mixed copper(II) complexes with sulfonamides and bipyridil
Mixed copper complexes have been synthetised through reaction of Cu(II) salts with bipyridil and N-quinolin-8-yl-p-toluenesulfonamide (Hqtsa), N-quinolin-8-yl-benzenesulfonamide (Hqbsa) or N-quinolin-8-yl-naftalenesulfonamide (Hqnsa). Single crystal X-ray diffraction structure determination shows that copper cations are five-coordinated, one complex have distorted bipyramidal trigonal geometry and the other have a distorted square-pyramid. The FT IR and EPR spectra are also reported. Electrophoresis results show that the synthetised complexes in the presence of ascorbate and hydrogen peroxide are chemical nucleases.
Synthesis and characterization of sulfonamides containing 8-aminoquinoline and their Ni(II) complexes. Crystalline structures of the Ni complexes
Reaction between 8-aminoquinoline and benzenesulfonyl, toluene-4-sulfonyl and naphthalene-2-sulfonyl chlorides in a basic medium leads to the formation of the corresponding sulfonamides. Reaction of these sulfonamides with Ni(II) salts leads to the formation of the corresponding complexes, with a NiL 2 stoichiometry. Determination of the crystalline structure by X-ray diffraction shows an octahedral environment for the Ni(II) ions, sulfonamides acting as bidentate ligands and two solvent molecules completing the octahedral coordination. The spectroscopic and magnetic properties of these compounds are also discussed.
Oxidative DNA damage of mixed copper(II) complexes with sulfonamides and 1,10-phenanthroline
Abstract Mixed coordination compounds of Cu(II) with sulfonamides and 1,10-phenanthroline as ligands have been prepared and characterised. Single crystal structural determination of the complex [Cu( N -quinolin-8-yl- p -toluenesulfonamidate) 2 (phen)] shows Cu(II) ions are located in a highly distorted octahedral environment, probably as a consequence of the Jahn–Teller effect. The FT-IR and electronic paramagnetic resonance (EPR) spectra are also discussed. The mixed complexes prepared undergo an extensive DNA cleavage in the presence of ascorbate and hydrogen peroxide. Two of the complexes have higher nucleolytic efficiency than the bis( o -phenanthroline)copper(II) complex.
Copper complexes with sulfonamides: crystal structure and interaction with pUC18 plasmid and hydrogen peroxide
N-Quinolin-8-yl-benzenesulfonamide (Hqbsa) and N-quinolin-8-yl-naftalenesulfonamide (Hqnsa) have been synthetized and physicochemically characterized, and used as ligands to coordinate copper complexes with ML2 stoichiometry. The structure of the compounds [Cu(qbsa)2]·DMF and [Cu(qnsa)2] has been determined by X-ray diffraction and both of them crystallize in the orthorhombic system. IR and ESR spectra of the complexes are discussed. The cleavage of pUCI8 by the copper complexes do not behave as chemical nucleases in the range of concentrations assayed.