0000000000174119
AUTHOR
U. Mjornmark
Production of strange particles in the hadronic decays of the Z0
Abstract An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.
Improved measurements of cross sections and asymmetries at the Z0 resonance
During the 1992 running period of the LEP e+e- collider, the DELPHI experiment accumulated approximately 24 pb-1 of data at the Z0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m(t) = 157(-48)+36(expt.)-20(+19)(Higgs) GeV, and for the effective mixing angle sin2 …
Search for neutralino pair production at root s = 189 GeV
A search for pair-production of neutralinos at a LEP centre-of-mass energy of 189 GeV gave no evidence for a signal. This limits the neutralino production cross-section and excludes regions in the parameter space of the Minimal Supersymmetric Standard Model (MSSM).
Performance of the DELPHI detector
DELPHI (DEtector with Lepton, Photon and Hadron Identification) is a detector for e(+)e(-) physics, designed to provide high granularity over a 4 pi solid angle, allowing an effective particle identification, It has been operating at the LEP (Large Electron-Positron) collider at CERN since 1989. This article reviews its performance.
A Precise Measurement of the $\tau$ Polarisation at LEP-1
The $\tau$ polarisation has been studied with the ${\rm e^+e^-}\to \tau^+\tau^-$ data collected by the DELPHI detector at LEP in 1993, 1994 and 1995 around the Z resonance firstly through the exclusive decay channels ${\rm e}\nu\bar{\nu}$ , $\mu\nu\bar{\nu}$ , $\pi\nu$ , $\rho\nu$ and ${\rm a}_1\nu$ and secondly with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision. The results have been combined with those previously published on 1990 to 1992 DELPHI data, to produce results which reflect the full LEP-1 statistics. The fit of the $\tau$ polarisation dependence on the production angle yielded the polarisation parameters ${\cal A}_{_{\sc…
Measurement of inclusive production of light meson resonances in hadronic decays of the Z0
A study of inclusive production of the meson resonances ρ0, K*0 (892), f{hook}0 (975) and f{hook}2 (1270) in hadronic decays of the Z0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ0 0.64 ± 0.24 for the K*0 (892), 0.10 ± 0.04 for the f{hook}0 (975) in the momentum range p > 0.05pbeam (xp > 0.05) and 0.11 ± 0.05 for the f{hook}2 (1270) for xp > 0.1. These values and the corresponding differential cross sections ( 1 σhadr) dσ dxp for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The f{hook}2 (1270) production is overestimated by HERWIG but its xp-shape is correctly reproduced. T…
First measurement of f′2 (1525) production in Z0 hadronic decays
The inclusive production of the f(2)'(1525) in hadronic Z(0) decays has been studied in data collected by the DELPHI detector at LEP. The Ring Imaging Cherenkov detectors were important tools in the identification of the decay f(2)'(1525) --> K+K-. The average number of f(2)(')(1525) produced per hadronic Z decay, [f(2)'] = 0.020 +/- 0.005 (stat) +/- 0.006 (syst), and the momentum distribution of the f(2)'(1525) have both been measured. The mass and width of the f(2)'(1525) are found to be [M(f2)'] = 1535 +/- 5 (stat) +/- 4 (syst) MeV/c(2). [Gamma(f2)'] = 60 +/- 20 (stat) +/- 19 (syst) MeV/c(2)
Measurement of the Z$^0$ branching fraction to b quark pairs using the boosted sphericity product
Abstract From a sample of about 120 000 hadronic Z 0 decays, using a technique based on a separation of the different event categories in the boosted sphericity product, the fraction of b b decays has been measured to be 0.219 ± 0.014 (stat)± 0.019 (syst). Using the DELPHI determination of the hadronic Z 0 width, this corresponds to a partial width τ b b = 378 ± 42 MeV (in good agreement with the standard model prediction of ∼-380 MeV). Combining this measurement with the determinations based on events with high p t leptons gives an estimate for the branching ratio of b into leptons at LEP of (11.2 ± 1.2)%, consistent with previous determinations.
Multiplicity fluctuations in hadronic final states from the decay of the Z0
An analysis of the fluctuations in the phase space distribution of hadrons produced in the decay of 78829 Z0 has been carried out, using the method of factorial moments. The high statistics collected by the DELPHI experiment at LEP during 1990 allowed studies of the event sample both globally and in intervals of p(t) and multiplicity, and for different jet topologies and for single jets. A large contribution to the factorial moments of the one-dimensional data on rapidity with respect to the event axis comes from hard gluons. Details of factorial moments in two and three dimensions are presented. Influences of resonance decays have been studied by Monte Carlo simulation: one-dimensional fac…
Consistent measurements of alpha(s) from precise oriented event shape distributions
An updated analysis using about 1.5 million events recorded at $\sqrt{s} = M_Z$ with the DELPHI detector in 1994 is presented. Eighteen infrared and collinear safe event shape observables are measured as a function of the polar angle of the thrust axis. The data are compared to theoretical calculations in ${\cal O} (\alpha_s^2)$ including the event orientation. A combined fit of $\alpha_s$ and of the renormalization scale $x_{\mu}$ in $\cal O(\alpha_s^2$) yields an excellent description of the high statistics data. The weighted average from 18 observables including quark mass effects and correlations is $\alpha_s(M_Z^2) = 0.1174 \pm 0.0026$. The final result, derived from the jet cone energ…