From hybrid to quadratic inflation with high-scale supersymmetry breaking
Motivated by the reported discovery of inflationary gravity waves by the BICEP2 experiment, we propose an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. The new model yields a tensor-to-scalar ratio r ~ 0.14 and scalar spectral index ns ~ 0.964, corresponding to quadratic (chaotic) inflation. The important new ingredients are the high-scale, (1.6-10) x 10^13 GeV, soft supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the K\"ahler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the breaking of a gauge symmetry at (1.2-7.1) x 10^16 GeV, comparable…
Kinetically Modified Non-Minimal Chaotic Inflation
We consider Supersymmetric (SUSY) and non-SUSY models of chaotic inflation based on the phi^n potential with 2<=n<=6. We show that the coexistence of a nonminimal coupling to gravity, fR=1+cR phi^(n/2), with a kinetic mixing of the form fK=cK fR^m can accommodate values of the spectral index, ns, and the tensor-to-scalar ratio, r, favored by the Bicep2/Keck Array and Planck results for 0<=m<=4 and 2.5x10^(-4)<=rRK=cR/cK^{n/4}<=1, where the upper limit is not imposed for n=2. Inflation can be attained for subplanckian inflaton values with the corresponding effective theories retaining the perturbative unitarity up to the Planck scale.
Upper bound on the tensor-to-scalar ratio in GUT-scale supersymmetric hybrid inflation
We explore the upper bound on the tensor-to-scalar ratio r in supersymmetric (F-term) hybrid inflation models with the gauge symmetry breaking scale set equal to the value 2.86⋅1016 GeV2.86⋅1016 GeV, as dictated by the unification of the MSSM gauge couplings. We employ a unique renormalizable superpotential and a quasi-canonical Kähler potential, and the scalar spectral index nsns is required to lie within the two-sigma interval from the central value found by the Planck satellite. In a sizable region of the parameter space the potential along the inflationary trajectory is a monotonically increasing function of the inflaton, and for this case, r≲2.9⋅10−4r≲2.9⋅10−4, while the spectral index…
Gravity waves from non-minimal quadratic inflation
We discuss non-minimal quadratic inflation in supersymmetric (SUSY) and non-SUSY models which entails a linear coupling of the inflaton to gravity. Imposing a lower bound on the parameter cR, involved in the coupling between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton while the corresponding effective theory respects the perturbative unitarity up to the Planck scale. Working in the non-SUSY context we also consider radiative corrections to the inflationary potential due to a possible coupling of the inflaton to bosons or fermions. We find ranges of the parameters, depending mildly on the renormalization scale, with adju…