6533b7d2fe1ef96bd125e2d8

RESEARCH PRODUCT

From hybrid to quadratic inflation with high-scale supersymmetry breaking

Constantinos PallisQaisar Shafi

subject

Inflation (cosmology)PhysicsHigh Energy Physics - TheoryParticle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)SupergravitySpontaneous symmetry breakingSuperpotentialHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsInflatonSupersymmetry breakingSymmetry (physics)lcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)lcsh:PhysicsGauge symmetryAstrophysics - Cosmology and Nongalactic Astrophysics

description

Motivated by the reported discovery of inflationary gravity waves by the BICEP2 experiment, we propose an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. The new model yields a tensor-to-scalar ratio r ~ 0.14 and scalar spectral index ns ~ 0.964, corresponding to quadratic (chaotic) inflation. The important new ingredients are the high-scale, (1.6-10) x 10^13 GeV, soft supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the K\"ahler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the breaking of a gauge symmetry at (1.2-7.1) x 10^16 GeV, comparable to the grand-unification scale.

10.1016/j.physletb.2014.07.031http://www.sciencedirect.com/science/article/pii/S0370269314005334