0000000000177457

AUTHOR

Yu. A. Litvinov

Precision experiments with time-resolved Schottky mass spectrometry

Abstract A large area on the mass surface of neutron-deficient nuclides (36≤Z≤85) was measured with time-resolved Schottky mass spectrometry at the FRS-ESR facilities. The masses of 114 nuclides were obtained for the first time from which 43 were determined via known decay energies. The improved mass accuracy of 30 keV allowed to study the isospin dependence of nuclear pairing, to precisely locate the one-proton dripline for odd-Z isotopes from Tb to Pa and to make crucial tests of the predictive powers of modern mass models.

research product

Comparison of electromagnetic and nuclear dissociation of Ne-17

8 pags., 10 figs., 3 tabs.

research product

Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth

The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center in Darmstadt aims for the determination of the ground state hyperfine (HFS) transitions and lifetimes in hydrogen-like (209Bi82+) and lithium-like (209Bi80+) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. While the HFS transition in H-like bismuth was already observed in earlier experiments at the ESR, the LIBELLE experiment succeeded for the first time to measure the HFS transition in Li-like bismuth in a laser spectroscopy experiment.

research product

First Measurement of Severalβ-Delayed Neutron Emitting Isotopes BeyondN=126

The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

research product

Measurement of the Dipole Polarizability of the Unstable Neutron-Rich NucleusNi68

The E1 strength distribution in Ni68 has been investigated using Coulomb excitation in inverse kinematics at the RB3-LAND setup and by measuring the invariant mass in the one- and two-neutron decay channels. The giant dipole resonance and a low-lying peak (pygmy dipole resonance) have been observed at 17.1(2) and 9.55(17) MeV, respectively. The measured dipole polarizability is compared to relativistic random phase approximation calculations yielding a neutron-skin thickness of 0.17(2) fm. A method and analysis applicable to neutron-rich nuclei has been developed, allowing for a precise determination of neutron skins in nuclei as a function of neutron excess.

research product

Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility

Masses of 582 neutron-deficient nuclides ($30\leq{Z}\leq{85}$) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 $\mu$u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies ($Q$-values) of $\alpha-$, $\beta-$, or proton decays. The obtained results are compared with the results of other measurements.

research product

Approaching the precursor nuclei of the third r-process peak with RIBs

The rapid neutron nucleosynthesis process involves an enormous amount of very exotic neutron-rich nuclei, which represent a theoretical and experimental challenge. Two of the main decay properties that affect the final abundance distribution the most are half-lives and neutron branching ratios. Using fragmentation of a primary $^{238}$U beam at GSI we were able to measure such properties for several neutron-rich nuclei from $^{208}$Hg to $^{218}$Pb. This contribution provides a short update on the status of the data analysis of this experiment, together with a compilation of the latest results published in this mass region, both experimental and theoretical. The impact of the uncertainties …

research product

Hyperfine transition in209Bi80+—one step forward

The hyperfine transitions in lithium-like and hydrogen-like bismuth were remeasured by direct laser spectroscopy at the experimental storage ring. For this we have now employed a voltage divider which enabled us to monitor the electron cooler voltage in situ. This will improve the experimental accuracy by about one order of magnitude with respect to our previous measurement using the same technique.

research product

Penning-trap mass spectrometry and mean-field study of nuclear shape coexistence in the neutron-deficient lead region

We present a study of nuclear shape coexistence in the region of neutron-deficient lead isotopes. The midshell gold isotopes 180,185,188,190Au (Z=79), the two long-lived nuclear states in 197At (Z=85), and the neutron-rich nuclide 219At were produced by the ISOLDE facility at CERN and their masses were determined with the high-precision Penning-trap mass spectrometer ISOLTRAP. The studied gold isotopes address the trend of binding energies in a region of the nuclear chart where the nuclear charge radii show pronounced discontinuities. Significant deviations from the atomic-mass evaluation were found for 188,190Au. The new trend of two-neutron separation energies is smoother, although it doe…

research product

Observation of a dramatic hindrance of the nuclear decay of isomeric states for fully ionized atoms

Abstract The half-lives of isomeric states of fully ionized 144Tb, 149Dy and 151Er have been measured. These nuclides were produced via fragmentation of about 900 MeV/u 209Bi projectiles, separated in flight with the fragment separator (FRS) and stored in the cooler ring (ESR). The decay times of the cooled fragments have been measured with time-resolved Schottky spectrometry. We observed for the first time drastic increases of the half-lives of bare isomers by factors of up to 30 compared to their neutral counterparts. This is due to the exclusion of the strong internal conversion and electron-capture channels in the radioactive decay of these bare nuclei. The experimental results are in g…

research product

Energy and range focusing of in-flight separated exotic nuclei – A study for the energy-buncher stage of the low-energy branch of the Super-FRS

Abstract The relative momentum spread of in-flight separated exotic nuclear beams produced in fragmentation and/or fission reactions is of the order of a few percent. A new technique is presented, which reduces the momentum spread significantly, and first experimental results obtained with relativistic projectile fragments are shown. This technique is the key to experiments with slowed-down and stopped beams, in particular for the efficient stopping of relativistic exotic nuclei in gas-filled stopping cells. It will be employed at the energy-buncher stage of the low-energy branch of the Super-FRS facility. The ion-optical design of the energy buncher is presented and a brief outlook to the …

research product

Coulomb excitation of exotic nuclei at the R3B-LAND setup

Exotic Ni isotopes have been measured at the R3B-LAND setup at GSI in Darmstadt, using Coulomb excitation in inverse kinematics at beam energies around 500 MeV/u. As the experimental setup allows kinematically complete measurements, the excitation energy was reconstructed using the invariant mass method. The GDR and additional low-lying strength have been observed in 68Ni, the latter exhausting 4.1(1.9)% of the E1 energy-weighted sum rule. Also, the branching ratio for the non-statistical decay of the excited 68Ni nuclei was measured and amounts to 24(4)%.

research product

Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring hesr at fair

The HESR high-energy ion storage ring at FAIR will provide unprecedented possibilities for strong-field physics using novel laser sources on relativistic heavy ions. An overview on the planning will be given.

research product

Nuclear-matter density distribution in the neutron-rich nuclei 12,14Be from proton elastic scattering in inverse kinematics

Abstract In the present work, the differential cross sections for small-angle proton elastic scattering on the 12,14 Be nuclei were measured in inverse kinematics, using secondary radioactive beams with energies near 700 MeV/u produced with the fragment separator FRS at GSI. The main part of the experimental setup was the active target IKAR, which was used simultaneously as a target and a detector for the recoil protons. Auxiliary detectors for projectile tracking and isotope identification completed the setup. The measured differential cross sections were analyzed using the Glauber multiple-scattering theory. For the evaluation of the data several phenomenological nuclear-matter density pa…

research product

First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers

We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}\mathrm{Cd}$ offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and confirms the phenomenon of mutually enhanced magicity at $^{132}\mathrm{Sn}$. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in $^{129}\mathrm{Cd}$ and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalizat…

research product

Measurements of ground-state properties for nuclear structure studies by precision mass and laser spectroscopy

Atomic physics techniques like Penning-trap and storage-ring mass spectrometry as well as laser spectroscopy have provided sensitive high-precision tools for detailed studies of nuclear ground-state properties far from the valley of β-stability. Mass, moment and nuclear charge radius measurements in long isotopic and isotonic chains have allowed extraction of nuclear structure information such as halos, shell and subshell closures, the onset of deformation, and the coexistence of nuclear shapes at nearly degenerate energies. This review covers experimental precision techniques to study nuclear ground-state properties and some of the most recent results for nuclear structure studies.

research product

Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

Abstract An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of abo…

research product

Study of the $^{15}$O(2p, γ )$^{17}$Ne cross section by Coulomb dissociation of $^{17}$Ne for the rp process of nucleosynthesis

Acta physica Polonica / B 45(2), 229 - 234 (2014). doi:10.5506/APhysPolB.45.229

research product

Target dependence in the study of collective modes in stable and exotic Ni nuclei

The appearance of the pygmy-dipole-resonance is a recently observed phenomenon that can be related to neutron-matter properties. Its study can be a tool to determine the nuclear symmetry-energy parameters and thus can contribute constraining neutron star models. We present the ( γ,n ) cross sections for different Ni isotopes obtained from a measurement in inverse kinematics at about 500 MeV/u in the LAND reaction setup at GSI. The question of the disentanglement of the Coulomb and nuclear contributions is addressed.

research product

Experimental study of the 15O(2p, γ)17Ne cross section by Coulomb Dissociation for the rp process

6th Nuclear Physics in Astrophysics Conference (NPA), Lisbon, Portugal, 19 May 2013 - 24 May 2013; Journal of physics / Conference Series 665, 012046 (2016). doi:10.1088/1742-6596/665/1/012046

research product

Simultaneous Measurement ofβ−Decay to Bound and Continuum Electron States

We report the first measurement of a ratio {lambda}{sub {beta}{sub b}}/{lambda}{sub {beta}{sub c}} of bound-state ({lambda}{sub {beta}{sub b}}) and continuum-state ({lambda}{sub {beta}{sub c}}) {beta}{sup -}-decay rates for the case of bare {sup 207}Tl{sup 81+} ions. These ions were produced at the GSI fragment separator FRS by projectile fragmentation of a {sup 208}Pb beam. After in-flight separation with the B{rho}-{delta}E-B{rho} method, they were injected into the experimental storage-ring ESR at an energy of 400.5A MeV, stored, and electron cooled. The number of both the {sup 207}Tl{sup 81+} ions and their bound-state {beta}{sup -}-decay daughters, hydrogenlike {sup 207}Pb{sup 81+} ion…

research product

First feasibility study for EXL prototype detectors at the ESR and detector simulations

This contribution presents some results from the first feasibility measurement performed at GSI using a 350 MeV/nucleon 136 Xe beam and a Hydrogen gas-jet target. In this feasibility study, one element of every possible detection part of the future EXL detection system was investigated. In addition, simulation results for EXL setup will be presented.

research product

New results with stored exotic nuclei at relativistic energies

Recently, much progress has been made with stored exotic nuclei at relativistic velocities ( v c = 0.7 ) . Fragments of 208Pb and 209Bi projectiles and fission products from 238U ions were produced, separated in flight with the fragment separator FRS, and injected into the storage-cooler ring ESR for precision measurements. 114 new masses of neutron-deficient isotopes in the lead region have been measured with time-resolved Schottky Mass Spectrometry (SMS). A new isospin dependence of the pairing energy was observed due to the improved mass accuracy of typically 1.5×10-7 (30 keV). New masses of short-lived neutron-rich fission fragments have been obtained with Isochronous Mass Spectrometry …

research product

β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N=126

Background: Previous measurements of Beta-delayed neutron emitters comprise around 230 nuclei, spanning from the 8He up to 150La. Apart from 210Tl, with a minuscule branching ratio of 0.07%, no other neutron emitter is measured yet beyond A = 150. Therefore new data are needed, particularly in the heavy mass region around N=126, in order to guide theoretical models and to understand the formation of the third r-process peak at A 195. Purpose: To measure both, Beta-decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb and Bi isotopes beyond N = 126. Method: Ions of interest are produced by fragmentation of a 238U beam, selected and identifed via the GSI-FRS fra…

research product

Study of Basic Nuclear Properties of Highly-Charged, Unstable Nuclei at the SIS-FRS-ESR Complex

Recent progress in experiments with exotic nuclear beams at the SIS-FRS-ESR facility is summarized. New results on gross properties of exotic nuclei like binding energy, half-lives, and decay modes are presented. A brief outlook to future experiments is given.

research product

Mass mapping of a new area of neutron-deficient suburanium nuclides

Abstract The masses of 64 short-lived neutron-deficient nuclides covering the element range from tungsten to uranium have been obtained for the first time. They have been evaluated by combining directly measured masses from Schottky mass spectrometry with linked experimental Q-values in α-decay chains. Based on these new mass data we have determined the one-proton and two-proton drip-lines as well as the size of the “littoral shallow” of the sea of instability. No evidence of a Thomas–Ehrman shift has been found in the region of the investigated heavy nuclides. A peculiar behavior of two-proton separation energies has been observed in the lead region. The predictive power of various mass mo…

research product

β-delayed neutron emission measurements around the third r-process abundance peak

This contribution summarizes an experiment performed at GSI (Germany) in the neutron-rich region beyond N=126. The aim of this measurement is to provide the nuclear physics input of relevance for r-process model calculations, aiming at a better understanding of the third r-process abundance peak. Many exotic nuclei were measured around 211Hg and 215Tl. Final ion identification diagrams are given in this contribution. For most of them, we expect to derive halflives and and β-delayed neutron emission probabilities. The detectors used in this experiment were the Silicon IMplantation and Beta Absorber (SIMBA) detector, based on an array of highly segmented silicon detectors, and the BEta deLayE…

research product

Coulomb dissociation of P 27 at 500 MeV/u

J. Marganiec et al. ; 15 págs.; 14 figs.; 6 tabs.

research product

Unveiling the two-proton halo character of 17Ne: Exclusive measurement of quasi-free proton-knockout reactions

7 pags., 5 figs.

research product

Experiments with stored exotic nuclei at relativistic energies

Abstract A review and recent progress are presented from experiments on masses and lifetimes of bare and few-electron exotic nuclei at GSI. Relativistic rare isotopes produced via projectile fragmentation and fission were separated in flight by the fragment separator FRS and injected into the storage ring ESR. This worldwide unique experimental method gives access to all fragments with half-lives down to the microsecond range. The great research potential is demonstrated by the discovery of new isotopes along with simultaneous mass and lifetime measurements. Single particle decay measurements and the continuous recording of both stored mother and daughter nuclei open up a new era for nuclea…

research product

Application of the relativistic mean-field mass model to ther-process and the influence of mass uncertainties

A new mass table calculated by the relativistic mean-field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. The r-process calculations using the FRDM, ETFSI-Q, and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the infl…

research product

Schottky mass measurements of stored and cooled neutron-deficient projectile fragments in the element range of 57≤Z≤84

Abstract A novel method for direct, high precision mass measurements of relativistic exotic nuclei has been successfully applied in the storage ring ESR at GSI. The nuclei of interest were produced by projectile fragmentation of 930 MeV / u bismuth ions, separated in-flight by the fragment separator FRS, stored and cooled in the ESR. The mass values have been deduced from the revolution frequencies of the coasting cooled ions. We have measured 104 new mass values with a precision of about 100 keV and a resolving power of 3.5×10 5 for the neutron-deficient isotopes of the elements 57≤Z≤84 . This paper presents the experimental method, the mass evaluation and a table of the experimental mass …

research product