Comparative effect of supercritical carbon dioxide and high pressure processing on structural changes and activity loss of oxidoreductive enzymes
Abstract Due to the CO2 specific characteristics, it has been used as supercritical (Sc) fluid for several applications, including enzyme inactivation. The influence of Sc-CO2 (10–65 MPa/10–30 min/35–65 °C) on mushroom polyphenol oxidase (PPO) and horseradish peroxidase (POD) was evaluated and the results were compared with those found using high pressure processing (HPP) (200–900 MPa/5–45 °C/1–15 min). The free ion concentration was also studied to compare the enzymatic activity and changes in electrical conductivity. Additionally both enzymes, untreated or treated using either Sc-CO2 or HPP, were used as additives in the CuCl2 crystallization method. The resulting additive-specific CuCl2 …
Enzymatic, physicochemical, nutritional and phytochemical profile changes of apple (Golden Delicious L.) juice under supercritical carbon dioxide and long-term cold storage
The impact of supercritical carbon dioxide (SCCD) (10-60 MPa/45 °C/30 min) and subsequent 10 weeks storage at 4 °C on polyphenol oxidase (PPO), peroxidase (POD) activities, phenolic profile, vitamin C, sugars, physicochemical properties of cloudy apple juices was investigated. No significant changes in sugars and total polyphenols were observed, whereas significant degradation (≈28%) of vitamin C and individual polyphenols (≈18%) was noted after SCCD treatment. After 4 weeks storage only 34% of vitamin C was retained and no vitamin C was detected after this time. Ten weeks of storage caused hydrolysis of sucrose in 15%, whereas degradation of individual polyphenols ranged from 43 to 50% dep…
Enzyme inactivation and evaluation of physicochemical properties, sugar and phenolic profile changes in cloudy apple juices after high pressure processing, and subsequent refrigerated storage
The effect of high pressure processing (HPP) (200–600 MPa/5–45°C/1–15 min) on the enzyme activity and some quality parameters of cloudy apple juice during subsequent storage (4°C for 12 weeks) was investigated. Statistical analysis showed that pressure, temperature, and time had a significant effect (p < 0.05) on tissue enzyme activity, decreasing the activity of polyphenol oxidases (PPO) and peroxidases (POD). No significant changes in physicochemical parameters (pH, total soluble solids, sugars, and vitamin C) were observed after HPP treatments. The main polyphenols detected in apple juice were dichydrochalcones, being phloridzin the predominant (48.8 mg/L), and flavanols, with the highes…