0000000000177845

AUTHOR

Hans Ade

showing 3 related works from this author

Zur Existenz von Lösungen gewisser Randwertaufgaben

1971

With the aid of some known results about integral equations of the Hammerstein type there is proofed an existence theorem for the following class of boundary value problems−y″−l 2 y′=f(x,y),y(a)=y(b)=0,l 2>0 mit|f(x, y)|=0,l 3 (x)>0. The existence range is determined by the greatest eigenvalue of some linear problem.

CombinatoricsApplied MathematicsGeneral MathematicsMathematical analysisLinear problemGeneral Physics and AstronomyExistence theoremIntegral equationBoundary valuesEigenvalues and eigenvectorsMathematicsZeitschrift für angewandte Mathematik und Physik ZAMP
researchProduct

Iterationsverfahren höherer Ordnung in Banach-Räumen

1969

The Newton process for operator equations in say a linear normed complete space converges under certain hypothesis about the Frechet-derivatives of the operator with at least the order two. There are different ways to improve this Newton process. For instance you obtain a process of order three if you add a correction element containing the second Frechet-derivative of the operator [1]. In the following note we will generalize this idea. In a recursive manner -- by adding higher derivatives -- we will construct iterative processes of any orderk (k > 1). A general theorem due toCollatz provides us error estimates for this processes. Last we will illustrate the processes by several examples.

AlgebraComputational MathematicsOperator (computer programming)General theoremApplied MathematicsNumerical analysisProcess (computing)Order (group theory)Construct (python library)Element (category theory)Complete metric spaceMathematicsNumerische Mathematik
researchProduct

Existenzsätze für schwach nichtlineare Operatorgleichungen und Anwendung auf Randwertaufgaben mit gewöhnlichen Differentialgleichungen

1979

With Schauder's fixpoint principle we establish an existence theorem for solutions of two simultaneous nonlinear operator equations of the formL iu=Miu, i=1,2, Li linear,M i continous. By applying this result to boundary value problems with ordinary differential equations we generalize results of Conti and Ehrmann in various directions.

Pure mathematicsGeneral MathematicsOrdinary differential equationMathematical analysisExistence theoremNonlinear operator equationsBoundary value problemAlgebra over a fieldFixed pointMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct