6533b825fe1ef96bd1282686

RESEARCH PRODUCT

Iterationsverfahren höherer Ordnung in Banach-Räumen

Hans Ade

subject

AlgebraComputational MathematicsOperator (computer programming)General theoremApplied MathematicsNumerical analysisProcess (computing)Order (group theory)Construct (python library)Element (category theory)Complete metric spaceMathematics

description

The Newton process for operator equations in say a linear normed complete space converges under certain hypothesis about the Frechet-derivatives of the operator with at least the order two. There are different ways to improve this Newton process. For instance you obtain a process of order three if you add a correction element containing the second Frechet-derivative of the operator [1]. In the following note we will generalize this idea. In a recursive manner -- by adding higher derivatives -- we will construct iterative processes of any orderk (k > 1). A general theorem due toCollatz provides us error estimates for this processes. Last we will illustrate the processes by several examples.

https://doi.org/10.1007/bf02165272