0000000000178982

AUTHOR

W. Seidel

Fracture Processes Observed with A Cryogenic Detector

In the early stages of running of the CRESST dark matter search using sapphire detectors at very low temperature, an unexpectedly high rate of signal pulses appeared. Their origin was finally traced to fracture events in the sapphire due to the very tight clamping of the detectors. During extensive runs the energy and time of each event was recorded, providing large data sets for such phenomena. We believe this is the first time the energy release in fracture has been directly and accurately measured on a microscopic event-by-event basis. The energy threshold corresponds to the breaking of only a few hundred covalent bonds, a sensitivity some orders of magnitude greater than that of previou…

research product

Onset of nuclear vaporization inAu197+197Au collisions

Multifragmentation has been measured for [sup 197]Au+[sup 197]Au collisions at [ital E]/[ital A]=100, 250, and 400 MeV. The mean fragment multiplicity increases monotonically with the charged particle multiplicity at [ital E]/[ital A]=100 MeV, but decreases for central collisions with incident energy, consistent with the onset of nuclear vaporization. Molecular dynamics calculations follow some trends but underpredict the observed fragment multiplicities. Including the statistical decay of excited residues improves the agreement for peripheral collisions but worsens it for central collisions.

research product

Fragment Flow and the Multifragmentation Phase Space

Fragment distributions have been measured for Au+Au collisions at [ital E]/[ital A]=100 and 1000 MeV. A high detection efficiency for fragments was obtained by combining the ALADIN spectrometer and the MSU-Miniball/WU-Miniwall array. At both energies the maximum multiplicity of intermediate mass fragments (IMF) normalized to the size of the decaying system is about one IMF per 30 nucleons but the element distributions show significant differences. Within a coalescence picture the suppression of heavy fragments in central collisions at [ital E]/[ital A]=100 MeV may be related to a reduction of the density in momentum space which is caused by the collective expansion.

research product

Fracture processes studied in CRESST

In the early stages of running of the CRESST dark matter search with sapphire crystals as detectors, an unexpectedly high rate of signal pulses appeared. Their origin was finally traced to fracture events in the sapphire due to the very tight clamping of the detectors. During extensive runs the energy and time of each event was recorded, providing large data sets for such phenomena. We believe this is the first time that the energy release in fracture has been accurately measured on a microscopic event-by-event basis. The energy distributions appear to follow a power law, dN/dE proportional to E-beta, similar to the Gutenberg-Richter power law for earthquake magnitudes, and after appropriat…

research product

Acousto-optical multiple interference switches

The authors introduce an alternative approach for acousto-optical light control based on the interference of light propagating through several waveguides, each subjected to a periodic refractive index modulation induced by a surface acoustic wave. The feasibility of the concept is demonstrated by the realization of an optical switch for arbitrary time intervals with an on/off contrast ratio of 20.

research product

Present status of the caloric curve of nuclei

Abstract Spectator decay was studied for the system Au + Au at an energy of 1000 A·MeV and the decay of the interaction region at energies between 50 and 200 A·MeV. In both cases temperatures were derived from several double-ratios of neighboring isotopes and from the population of excited states in 5 Li and 4 He. Agreement was found among the different isotope temperatures and also among the two excited state temperatures. The comparison of isotope and excited state temperatures, however, reveals large differences, which cannot be explained by feeding corrections. At incident energies between 600 and 1000 A·MeV the energy spectra of fragments and also neutrons of the decaying projectile sp…

research product

Embedded interdigital transducers for high frequency surface acoustic waves on GaAs

We investigate high-performance, high-frequency interdigital transducers (IDTs) for the generation of surface acoustic waves(SAWs) on GaAs substrates, where the metal fingers are embedded in the substrate. We demonstrate that the acoustic reflections and the scattering of the surface modes into the substrate become considerably reduced in these transducers, leading to an increased output power. The finger embedding process is particularly relevant for the generation of powerful beams of high-frequency SAWs on weak piezoelectric substrates (such as most of the semiconducting materials) using long IDTs. We also show that the reflection reduction is important for the design of focusing single-finge…

research product

Electromagnetic fission of $^{238}$U at 600 and 1000 MeV per nucleon

Electromagnetic fission of238U projectiles at E/A =600 and 1000 MeV was studied with the ALADIN spectrometer at the heavy-ion synchrotron SIS. Seven different targets (Be, C, Al, Cu, In, Au and U) were used. By considering only those fission events where the two charges added up to 92, most of the nuclear interactions were excluded. The nuclear contributions to the measured fission cross sections were determined by extrapolating from beryllium to the heavier targets with the concept of factorization. The obtained cross sections for electromagnetic fission are well reproduced by extended Weizsacker-Williams calculations which include E1 and E2 excitations. The asymmetry of the fission fragme…

research product

Focusing of surface-acoustic-wave fields on (100) GaAs surfaces

Focused surface-acoustic waves (SAWs) provide a way to reach intense acoustic fields for electro- and optoacoustic applications on semiconductors. We have investigated the focusing of SAWs by interdigital transducers (IDTs) deposited on (100)-oriented GaAs substrates. The focusing IDTs have curved fingers designed to account for the acoustic anisotropy of the substrate. Different factors that affect focusing, such as the aperture angle and the configuration of the IDT fingers, were systematically addressed. We show that the focusing performance can be considerably improved by appropriate choice of the IDT metal pads, which, under appropriate conditions, create an acoustic waveguide within t…

research product

"Table 1" of "Electromagnetic fission of U-238 at 600-MeV and 1000-MeV per nucleon"

Electromagnetic fission.

research product