0000000000179079
AUTHOR
Thomas Rauscher
THE R-PROCESS: SUPERNOVAE AND OTHER SOURCES OF THE HEAVIEST ELEMENTS
Rapid neutron capture in stellar explosions is responsible for the heaviest elements in nature, up to Th , U and beyond. This nucleosynthesis process, the r-process, is unique in the sense that a combination of nuclear physics far from stability (masses, half-lives, neutron-capture and photodisintegration, neutron-induced and beta-delayed fission and last but not least neutrino-nucleus interactions) is intimately linked to ejecta from astrophysical explosions (core collapse supernovae or other neutron star related events). The astrophysics and nuclear physics involved still harbor many uncertainties, either in the extrapolation of nuclear properties far beyond present experimental explorat…
rp-process nucleosynthesis at extreme temperature and density conditions
We present nuclear reaction network calculations to investigate the influence of nuclear structure on the rp-process between Ge and Sn in various scenarios. Due to the lack of experimental data for neutron-deficient nuclei in this region, we discuss currently available model predictions for nuclear masses and deformations as well as methods of calculating reaction rates (Hauser-Feshbach) and beta-decay rates (QRPA and shell model). In addition, we apply a valence nucleon (NpNn) correlation scheme for the prediction of masses and deformations. We also describe the calculations of 2p-capture reactions, which had not been considered before in this mass region. We find that in X-ray bursts 2p-c…
New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…
The Astrophysicalr‐Process: A Comparison of Calculations following Adiabatic Expansion with Classical Calculations Based on Neutron Densities and Temperatures
The rapid neutron-capture process (r-process) encounters unstable nuclei far from β-stability. Therefore its observable features, like the abundances, witness (still uncertain) nuclear structure as well as the conditions in the appropriate astrophysical environment. With the remaining lack of a full understanding of its astrophysical origin, parameterized calculations are still needed. We consider two approaches: (1) the classical approach is based on (constant) neutron number densities nn and temperatures T over duration timescales τ; (2) recent investigations, motivated by the neutrino wind scenario from hot neutron stars after a supernova explosion, followed the expansion of matter with …
7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN
One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…
The n_TOF facility: Neutron beams for challenging future measurements at CERN
The CERN n TOF neutron beam facility is characterized by a very high instantaneous neutron flux, excellent TOF resolution at the 185 m long flight path (EAR-1), low intrinsic background and coverage of a wide range of neutron energies, from thermal to a few GeV. These characteristics provide a unique possibility to perform high-accuracy measurements of neutron-induced reaction cross-sections and angular distributions of interest for fundamental and applied Nuclear Physics. Since 2001, the n TOF Collaboration has collected a wealth of high quality nuclear data relevant for nuclear astrophysics, nuclear reactor technology, nuclear medicine, etc. The overall efficiency of the experimental prog…
Neutron capture cross section measurements for nuclear astrophyisics at CERN n_TOF
A series of neutron capture cross section measurements of interest to nuclear astrophysics have been recently performed at n_TOF, the neutron spallation source operating at CERN. The low repetition frequency of the proton beam driver, the extremely high instantaneous neutron flux, and the low background conditions in the experimental area are optimal for capture cross section measurements on low-mass or radioactive samples. An overview of the measurements performed during the two experimental campaigns in 2002 and 2003 is presented with special emphasis on the measurement of the capture cross sections of the Os isotopes relevant for the cosmochronology based on the Re/Os clock. http://www.s…
Applicability Of The Hauser-Feshbach Approach For The Determination of Astrophysical Reaction Rates
Nuclear Astrophysics requires the knowledge of reaction rates over a wide range of nuclei and temperatures. In recent calculations the nuclear level density - as an important ingredient to the statistical model (Hauser-Feshbach) - has shown the highest uncertainties. In a back-shifted Fermi-gas formalism utilizing an energy-dependent level density parameter and employing microscopic corrections from a recent FRDM mass formula, we obtain a highly improved fit to experimental level densities. The resulting level density is used for determining criteria for the applicability of the statistical model on neutron-induced reactions.
Heavy Elements and Age Determinations
The age of the universe, measured from the Big Bang to the present, is at the focus of cosmology. Its determination relies, however, on the use of stellar objects or their products. Stellar explosions, like type Ia supernovae serve as standard(izable) candles to measure the expansion of the universe. Hertzsprung—Russell diagrams of globular clusters can determine the age of such clusters and thus are lower limits of the age of the galaxy and therefore also the universe. Some nuclear isotopes with half-lives comparable to the age of galaxies (and the universe) can serve as clocks (chronometers) for the duration of nucleosynthesis. The isotopes 238U and 232Th with half-lives of 4.5 × l09 and …
The origin of the Ca–Ti–Cr–Fe–Ni isotopic anomalies in the inclusion EK-1-4-1 of the Allende meteorite
The origin of the correlated Ca-Ti-Cr-Fe-Ni isotopic anomalies in the Ca-Al-rich inclusion of the EK-1-4-1 of the Allende is a longstanding puzzle. The search for a stellar environment which could explain the enrichment of neutron-rich stable Ca-...-Ni isotopes in a self-consistent way requires nuclear physics data far from stability. Recent experimental data have been obtained in the region of the shell closures N = 28 and N = 40, where the possible progenitors of these nuclei are found. Astrophysical network calculations have been updated by including the new beta-decay properties and microscopic predictions of neutron-capture cross sections. Interplay between nuclear structure far from s…
Neutron-rich isotopesTi54−57
The neutron-rich isotopes $^{54\mathrm{\ensuremath{-}}57}\mathrm{Ti}$ and $^{58\mathrm{\ensuremath{-}}60}\mathrm{Cr}$ are produced by fragmentation of a 64.5 MeV/nucleon $^{65}\mathrm{Cu}^{26+}$ beam in a 90 mg/${\mathrm{cm}}^{2}$ $^{9}\mathrm{Be}$ target. Following particle identification by energy loss and time of flight, the radioactive decay was observed by \ensuremath{\beta} singles and \ensuremath{\beta}\ensuremath{\gamma}-coincidence measurements. The results obtained for $^{58\mathrm{\ensuremath{-}}60}\mathrm{Cr}$ are compared to previous results, whereas the decay of the $^{54\mathrm{\ensuremath{-}}57}\mathrm{Ti}$ isotopes is studied here. \ensuremath{\gamma}-ray intensities and en…
Primordial Heavy Element Production
A number of possible mechanisms have been suggested to generate density in-homogeneities in the early Universe which could survive until the onset of primordial nucleosynthesis (Malaney and Mathews 1993). In this work we are not concerned with how the inhomogeneities were generated but we want to focus on the effect of such inhomogeneities on primordial nucleosynthesis. One of the proposed signatures of inhomogeneity, the synthesis of very heavy elements by neutron capture, was analyzed for varying baryon to photon ratios n and length scales L. A detailed discussion is published in (Rauscher et al. 1994b). Preliminary results can be found in (Thielemann et al. 1991; Rauscher et al. 1994a).
Be7(n,α)He4Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN
The energy-dependent cross section of the (7)Bed(n,alpha)He-4 reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of Be-7 and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure Be-7, and a specifically designed experimental setup. Coincidences between the two alpha particles have been…
Neutron cross section measurements at n_TOF for ADS related estudies
A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main res…
Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV
The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…
Direct neutron capture for magic-shell nuclei.
In neutron capture for magic--shell nuclei the direct reaction mechanism can be important and may even dominate. As an example we investigated the reaction $^{48}$Ca(n,$\gamma)^{49}$Ca for projectile energies below 250\,keV in a direct capture model using the folding procedure for optical and bound state potentials. The obtained theoretical cross sections are in agreement with the experimental data showing the dominance of the direct reaction mechanism in this case. The above method was also used to calculate the cross section for $^{50}$Ca(n,$\gamma)^{51}$Ca.
The Nuclear astrophysics program at n_TOF (CERN)
An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…
First beta-decay studies of the neutron-rich isotopes 53-55Sc and 56-59V
The neutron-rich isotopes Sc53-55 and V56-59 have been produced at GANIL in interactions of a 64.5 MeV/u Cu-65 beam with a Be-9 target. They were separated by the doubly achromatic spectrometer LISE3. Beta-decay half-lives and subsequent low-energy gamma-rays were observed for the first time. The present results are compared to QRPA model predictions. The quick drop of the half-life observed at N = 33 for Ca-53(20)33 is water V-56(23)33 and absent for Sc-54(21)33, indicating a vanishing of the N = 32 subshell north to Ca-52(32). In an astrophysical context, these neutron-rich isotopes represent r-process progenitors which, after beta-decay, would produce the correlated isotopic over-abundan…
Astrophysical conditions for an r-process in the high-entropy wind scenario of type II supernovae
Within a full dynamical parameter study including freezeout effects, we have determined the astrophysical conditions for an r-process in the so-called ``neutrino-wind`` scenario of core-collapse type II supernovae (SNII). We have started our calculations after the total photo disintegration of the matter above the nascent neutron star at 9 (.) 101 Kelvin with protons and neutrons. We have used the charged-particle network of Thielemann and the r-process code of Freiburghaus, combined with the NON-SMOKER neutron-capture rates of Rauscher, nuclear masses from the ETFS1-Q mass model and recent experimental and theoretical gross beta-decay properties. Using the three parameters V-exp (expansion…
The 33S(n,α)30Si cross section measurement at n TOF-EAR2 (CERN): From 0.01 eV to the resonance region
The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT).
The electronion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR) - A conceptual design study
The electronion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. © 2011 Elsevier B.V. All rights reserved.
Measurement of the Pu-242(n,gamma) cross section from thermal to 500 keV at the Budapest research reactor and CERN n_TOF-EAR1 facilities
The design and operation of innovative nuclear systems requires a better knowledge of the capture and fission cross sections of the Pu isotopes. For the case of capture on 242Pu, a reduction of the uncertainty in the fast region down to 8-12% is required. Moreover, aiming at improving the evaluation of the fast energy range in terms of average parameters, the OECD NEA High Priority Request List (HPRL) requests high-resolution capture measurements with improved accuracy below 2 keV. The current uncertainties also affect the thermal point, where previous experiments deviate from each other by 20%. A fruitful collaboration betwen JGU Mainz and HZ Dresden-Rossendorf within the EC CHANDA project…
The Role of Fission in the r-process
We have developed a full set of fission rates that include spontaneous fission, neutron-induced fission, beta-delayed fission and, neutrino-induced fission, that are supplemented with realistic distributions of fission yields. Using this new input data we have carried out r-process calculations assuming adiabatic expansions that mimic the conditions achieved in the supernova neutrino driven wind. We have explored the sensitivity of the final abundances to different mass models. The resulting abundance distribution turns out to be very sensitive to the strength of the N = 82 shell gap far from stability. Mass models with a strong shell gap converge to an r-process distribution that is indepe…
Nuclear Data for the Thorium Fuel Cycle and the Transmutation of Nuclear Waste
Neutron-induced reaction cross sections play an important role in a wide variety of research fields, ranging from stellar nucleosynthesis, the investigation of nuclear level density studies, to applications of nuclear technology, including the transmutation of nuclear waste, accelerator-driven systems, and nuclear fuel cycle investigations. Simulations of nuclear technology applications largely rely on evaluated nuclear data libraries. These libraries are based both on experimental data and theoretical models. An outline of experimental nuclear data activities at CERN’s neutron time-of-flight facility, n_TOF, will be presented.
The 236U neutron capture cross-section measured at the n TOF CERN facility
International audience; The $^{236}$U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the $^{236} \text{U}(n, \gamma)$ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C$_6$D$_6$ detectors, employing the total energy deposited method, and a 4$\pi$ total absorption calorimeter (TAC), made of 40 BaF$_2$ crystals. The t…
High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility
The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n-TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented. © The Authors, published by EDP Sciences, 2017.
Fission fragment angular distribution of 232Th(n,f) at the CERN n TOF facility
The angular distribution of fragments emitted in neutron-induced fission of 232Th was measured in the white spectrum neutron beam at the n_TOF facility at CERN. A reaction chamber based on Parallel Plate Avalanche Counters (PPAC) was used, where the detectors and the targets have been tilted 45 degrees with respect to the neutron beam direction in order to cover the full angular range of the fission fragments. A GEANT4 simulation has been developed to study the setup efficiency. The data analysis and the preliminary results obtained for the 232Th(n,f) between fission threshold and 100 MeV are presented here.
Radiative neutron capture on Pu242 in the resonance region at the CERN n_TOF-EAR1 facility
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluat…
The measurement programme at the neutron time-of-flight facility n_TOF at CERN
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n TOF has produced a considerabl…
Astrophysical reaction rates forB10(p,α)7Be andB11(p,α)8Be from a direct model
The reactions $^{10}\mathrm{B}$(p,\ensuremath{\alpha}${)}^{7}$Be and $^{11}\mathrm{B}$(p,\ensuremath{\alpha}${)}^{8}$Be are studied at thermonuclear energies using DWBA calculations. For both reactions, transitions to the ground states and first excited states are investigated. In the case of $^{10}\mathrm{B}$(p,\ensuremath{\alpha}${)}^{7}$Be, a resonance at ${\mathit{E}}_{\mathrm{res}}$=10 keV can be consistently described in the potential model, thereby allowing the extension of the astrophysical S-factor data to very low energies. Strong interference with a resonance at about ${\mathit{E}}_{\mathrm{res}}$=550 keV require a Breit-Wigner description of that resonance and the introduction o…
Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis
The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.
Measurement of the 151Sm n,gamma 152Sm cross section at n_TOF
The 151 Sm(n, γ ) 152 Sm cross section, which is important for the interpretation of the 151 Sm branching as an s -process thermometer, was measured from 1 eV up to 1 MeV at the innovative n_TOF facility at CERN. Based on these data, the Maxwellian-averaged cross section at k T = 30 keV is found to be 3100±160 mb. This value can be used to constrain the thermodynamical conditions in Asymptotic Giant Branch (AGB) stars during He-shell burning.
The r-process in the high entropy bubble
We examined the r-process in the high entropy bubble within a detailed parameter study. Previous investigations ([1,2]) based on realistic supernovae models showed already that this model yields a very good fit to the solar system r-process abundance curve for masses above A = 120. For A < 120 their fit was relatively poor. We are concerned mainly with the question whether it is possible to obtain a good fit in the range below A = 120. Within a simple approach of an adiabatically expanding sphere we analyzed a broad parameter range, independent of specific explosion simulations. We varyied the electron abundance Ye and the entropy S and studied the resulting contributions as a function of t…
Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN
New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental …
Nuclear data activities at the n_TOF facility at CERN
International audience; Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluate…
The endpoint of the rp-process
Abstract The endpoint of rp-process nucleosynthesis in X-ray bursts determines the fuel consumption, the energy generation, and the abundance pattern of the produced nuclei. To investigate the time structure of rp-process nucleosynthesis, we used a nuclear reaction network including nuclei from H to Sn. We found that if 2p-capture reactions are included, the synthesis of nuclei heavier than Kr proceeds faster than previously thought. Therefore, in most X-ray bursts large amounts of nuclei in the A=80–100 region are expected to be produced. With an escape factor of about 1%, X-ray bursts could account for the large observed solar system abundances of the light p-nuclei like 92 Mo and 96 Ru t…
Measurements of the 90,91,92,94,96 Zr n, gamma cross-sections at n_TOF
Neutron capture cross sections of the 90,91,92,94,96Zr have been measured over the energy range from 1 eV to 1 MeV at the spallation neutron facility n TOF at CERN in 2003. The innovative features of the neutron beam, in particular the high instantaneous flux, the high energy resolution and low background, together with improvements of the neutron sensitivity of the capture detectors make this facility unique for neutron-induced reaction cross section measurements with much improved accuracy. The preliminary results of the Zr measurements show capture resonance strengths generally smaller than in previous measurements. Peer Reviewed
Nuclear Level Density and the Determination of Thermonuclear Rates for Astrophysics
The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We discuss the model mostly employed for such calculations: the statistical model (Hauser-Feshbach). Special emphasis is put on the uncertainties arising from nuclear level density descriptions and an improved global description is presented. Furthermore, criteria for the applicability of the statistical model are investigated and a "map" for the applicability of the model to reactions of stable and unstable nuclei with neutral and charged particles is given.
Dependence of direct neutron capture on nuclear-structure models
The prediction of cross sections for nuclei far off stability is crucial in the field of nuclear astrophysics. We calculate direct neutron capture on the even-even isotopes $^{124-145}$Sn and $^{208-238}$Pb with energy levels, masses, and nuclear density distributions taken from different nuclear-structure models. The utilized structure models are a Hartree-Fock-Bogoliubov model, a relativistic mean field theory, and a macroscopic-microscopic model based on the finite-range droplet model and a folded-Yukawa single-particle potential. Due to the differences in the resulting neutron separation and level energies, the investigated models yield capture cross sections sometimes differing by orde…
Women Scientists Who Made Nuclear Astrophysics
Female role models reduce the impact on women of stereotype threat, i.e. of being at risk of conforming to a negative stereotype about one’s social, gender, or racial group (Fine in Delusion of Gender. W.W. Norton & Co. NY, p. 36, 2010 [1]; Steele and Aronson in J Pers Soc Psychol 69:797–811, 1995 [2]). This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible (CafeBabel Homepage [3]). In response to this situation, we present a selection of twelve outst…