0000000000179094

AUTHOR

Philippe Rondeau

Assessment of temperature effects on beta-aggregation of native and glycated albumin by FTIR spectroscopy and PAGE: relations between structural changes and antioxidant properties.

Abstract Structural modifications of bovine serum albumin (BSA) induced by heating, and the involvement of glycation of albumin in such processing were studied by using Fourier transform infrared spectroscopy (FTIR) and polyacrylamide gel electrophoresis (PAGE). For native BSA, heating treatments gave rise to β structures which were amplified to the detriment of α-helix form, and which were associated with increased aggregation. A very high correlation was obtained between FTIR Amide I band evolution and aggregation rate parameters, showing the contribution of β-form in aggregates formation. We further assessed the effect of glycation on protein sensibility to heating treatments. A reductio…

research product

Thermal aggregation of glycated bovine serum albumin

International audience; Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose con…

research product

Attenuated Total Reflection-Fourier transform infrared analysis of the fermentation process of pineapple

Abstract A direct and reagent free procedure has been developed to monitor the fermentation process of pine apple nectar using Attenuated Total Reflectance Fourier-transform mid-infrared spectrometry (FT-IR) and multivariate analysis. A classical 4 2 design for standards was employed for calibration using the information in the spectral range from 907 to 1531 cm −1 of the first order derivative spectra after mean centering of infrared data. The root mean square error of calibration (RMSEC) of 0.040, 0.021, 0.063 and 0.074% w/w were obtained for glucose, fructose, saccharose and ethanol, respectively, and a mean relative validation error of 2.9, 2.1, 2.6 and 3.6% was achieved for glucose, fr…

research product

Deciphering metal-induced oxidative damages on glycated albumin structure and function

Background: Metal ions such as copper or zinc are involved in the development of neurodegenerative pathologies and metabolic diseases such as diabetes mellitus. Albumin structure and functions are impaired following metal-and glucose-mediated oxidative alterations. The aim of this study was to elucidate effects of Cu(II) and Zn(II) ions on glucose-induced modifications in albumin by focusing on glycation, aggregation, oxidation and functional aspects. Methods: Aggregation and conformational changes in albumin were monitored by spectroscopy, fluorescence and microscopy techniques. Biochemical assays such as carbonyl, thiol groups, albumin-bound Cu, fructosamine and amine group measurements w…

research product

Effects of oxidative modifications induced by the glycation of bovine serum albumin on its structure and on cultured adipose cells

Non-enzymatic glycosylation (glycation) and oxidative damages represent major research areas insofar as such modifications of proteins are frequently observed in numerous states of disease. Albumin undergoes structural and functional alterations, caused by increased glycosylation during non insulin-dependent diabetes mellitus, which is closely linked with the early occurrence of vascular complications. In this work, we first characterized structural modifications induced by the glycation of bovine serum albumin (BSA). A pathophysiological effect of glycated BSA was identified in primary cultures of human adipocytes as it induces an accumulation of oxidatively modified proteins in these cell…

research product

Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-lik…

research product