0000000000179110

AUTHOR

Aurora Chinnici

showing 7 related works from this author

MYC-driven epigenetic reprogramming favors the onset of tumorigensis by inducing a stem cell-like state

2017

AbstractBreast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes resulted difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Over-expression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathw…

medicine.anatomical_structureCell of originCellmedicineTumor initiationEpigeneticsBiologyStem cellEnhancerTranscription factorReprogrammingCell biology
researchProduct

Cancer Stem Cells: From Birth to Death

2019

Abstract Conspicuous investigations have proven the role of cancer stem cells (CSCs) in the onset and progression of a plethora of liquid and solid neoplasms. CSCs are endowed with the capability of initiating tumor growth and becoming dormant at distant organ sites just waiting for optimal conditions amenable for metastatic outgrowth. This cancer subpopulation is inherently resistant to anticancer therapeutics, and its targeting could avoid metastatic disease, which is largely incurable, and clinical relapses. CSCs are considered the Achilles heel of cancer. However, many efforts are necessary to identify univocal CSC markers as well as specific CSC biomarkers of therapeutic response. Here…

business.industryCancer stem cellCancer · Metastasis · Cancer stem cells · Drug resistance · Anticancer drugsCancer researchMedicineCancerTumor growthDiseaseDrug resistancebusinessmedicine.diseaseMetastasis
researchProduct

Design, synthesis and preliminary evaluation of dopamine-amino acid conjugates as potential D1 dopaminergic modulators.

2016

Abstract The dopamine-amino acid conjugate DA-Phen was firstly designed to obtain a useful prodrug for the therapy of Parkinson's disease, but experimental evidence shows that it effectively interacts with D1 dopamine receptors (D1DRs), leading to an enhancement in cognitive flexibility and to the development of adaptive strategies in aversive mazes, together with a decrease in despair-like behavior. In this paper, homology modelling, molecular dynamics, and site mapping of D1 receptor were carried out with the aim of further performing docking studies on other dopamine conjugates compared with D1 agonists, in the attempt to identify new compounds with potential dopaminergic activity. Two n…

0301 basic medicineDopamineDopamine AgentsChemistry Techniques SyntheticPharmacology01 natural sciencesDocking03 medical and health sciencesDopamine receptor D1Drug StabilityDopamineCatalytic DomainDrug DiscoverymedicineAnimalsHumansAmino Acidschemistry.chemical_classificationConjugatePharmacologyPCA010405 organic chemistryChemistrySynthesiDrug Discovery3003 Pharmaceutical ScienceReceptors Dopamine D1DopaminergicOrganic ChemistryBrainGeneral MedicineProdrug0104 chemical sciencesAmino acidAmino acidRatsMolecular Docking Simulation030104 developmental biologyBiochemistryDocking (molecular)Dopamine receptorDrug DesignMolecular modellingConjugatemedicine.drugEuropean journal of medicinal chemistry
researchProduct

IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition

2017

Abstract The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor–positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4Rα antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24− cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4 by inhibiting NF-κB. Enforced expression of DUSP4 drove conversio…

0301 basic medicineCancer ResearchBlotting WesternCA 15-3Breast Neoplasms03 medical and health sciencesParacrine signalling0302 clinical medicineBreast cancerCell Line TumorTumor MicroenvironmentmedicineHumansskin and connective tissue diseasesAutocrine signallingDual-Specificity PhosphataseBlotting Western; Breast Neoplasms; Cell Line Tumor; Disease Progression; Dual-Specificity Phosphatases; Female; Flow Cytometry; Heterografts; Humans; Interleukin-4; Mitogen-Activated Protein Kinase Phosphatases; Tumor Microenvironment; Oncology; Cancer ResearchTumor microenvironmentbiologyCD44CancerFlow Cytometrymedicine.disease030104 developmental biologyOncology030220 oncology & carcinogenesisImmunologyCancer cellDisease Progressionbiology.proteinCancer researchDual-Specificity PhosphatasesHeterograftsMitogen-Activated Protein Kinase PhosphatasesFemaleInterleukin-4HeterograftMitogen-Activated Protein Kinase PhosphataseBreast NeoplasmHumanCancer Research
researchProduct

MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state

2018

Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermo…

0301 basic medicineCarcinogenesisScienceGeneral Physics and AstronomyBreast NeoplasmsMice SCIDTumor initiationBiologyBreast cancer MYC Tumorigenesismedicine.disease_causeArticleGeneral Biochemistry Genetics and Molecular BiologyEpigenesis GeneticProto-Oncogene Proteins c-mycMice03 medical and health sciencesCell Line TumormedicineAnimalsHumansEpigeneticslcsh:ScienceEnhancerTranscription factorRegulation of gene expressionMultidisciplinaryQGeneral ChemistryCellular ReprogrammingCell biologyGene Expression Regulation NeoplasticEnhancer Elements Genetic030104 developmental biologyNeoplastic Stem CellsFemalelcsh:QStem cellCarcinogenesisReprogramming
researchProduct

Meeting the Challenge of Targeting Cancer Stem Cells

2019

Notwithstanding cancer patients benefit from a plethora of therapeutic alternatives, drug resistance remains a critical hurdle. Indeed, the high mortality rate is associated with metastatic disease, which is mostly incurable due to the refractoriness of metastatic cells to current treatments. Increasing data demonstrate that tumors contain a small subpopulation of cancer stem cells (CSCs) able to establish primary tumor and metastasis. CSCs are endowed with multiple treatment resistance capabilities comprising a highly efficient DNA damage repair machinery, the activation of survival pathways, enhanced cellular plasticity, immune evasion and the adaptation to a hostile microenvironment. Due…

cancer stem cells0301 basic medicinecancer stem cellPhysiologymedicine.medical_treatmentPopulationReviewMetastasis03 medical and health sciencesepigenetic inhibitor0302 clinical medicineDifferentiation therapyCancer stem cellepigenetic inhibitorsmedicineanti-cancer therapiesmetastasisEpigeneticseducationlcsh:QH301-705.5education.field_of_studybusiness.industryanti-cancer therapieCancerCell BiologyImmunotherapymedicine.diseasePrimary tumor030104 developmental biologylcsh:Biology (General)030220 oncology & carcinogenesisCancer researchimmunotherapybusinessDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct

ΔNp63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis

2016

P63 is a transcription factor belonging to the family of p53, essential for the development and differentiation of epithelia. In recent years, it has become clear that altered expression of the different isoforms of this gene can play an important role in carcinogenesis. The p63 gene encodes for two main isoforms known as TA and ΔN p63 with different functions. The role of these different isoforms in sustaining tumor progression and metastatic spreading however has not entirely been clarified. Here we show that breast cancer initiating cells express ΔNp63 isoform that supports a more mesenchymal phenotype associated with a higher tumorigenic and metastatic potential. On the contrary, the ma…

0301 basic medicineGene isoformEpithelial-Mesenchymal TransitionBreast Neoplasmsmedicine.disease_causeMetastasisMicePhosphatidylinositol 3-Kinases03 medical and health sciencesBreast cancerTumor MicroenvironmentmedicineAnimalsHumansmetastasisEpithelial–mesenchymal transitionNeoplasm MetastasisPI3K/AKT/mTOR pathwayAgedAged 80 and overTumor microenvironmentp63breast cancer initiating cellsbusiness.industryMembrane ProteinsCD44v6Middle Agedmedicine.diseasePI3K/AKT pathwayHyaluronan Receptors030104 developmental biologyOncologyDrug Resistance NeoplasmTumor progressionImmunologyCancer researchFemalebreast cancer initiating cellmetastasibusinessCarcinogenesisProto-Oncogene Proteins c-aktSignal TransductionPriority Research Paper
researchProduct