6533b829fe1ef96bd128a33a

RESEARCH PRODUCT

Design, synthesis and preliminary evaluation of dopamine-amino acid conjugates as potential D1 dopaminergic modulators.

Ugo PerriconeMarco TutoneViviana De CaroAurora ChinniciAnna Maria AlmericoFlavia Maria SuteraFlavia Maria Sutera

subject

0301 basic medicineDopamineDopamine AgentsChemistry Techniques SyntheticPharmacology01 natural sciencesDocking03 medical and health sciencesDopamine receptor D1Drug StabilityDopamineCatalytic DomainDrug DiscoverymedicineAnimalsHumansAmino Acidschemistry.chemical_classificationConjugatePharmacologyPCA010405 organic chemistryChemistrySynthesiDrug Discovery3003 Pharmaceutical ScienceReceptors Dopamine D1DopaminergicOrganic ChemistryBrainGeneral MedicineProdrug0104 chemical sciencesAmino acidAmino acidRatsMolecular Docking Simulation030104 developmental biologyBiochemistryDocking (molecular)Dopamine receptorDrug DesignMolecular modellingConjugatemedicine.drug

description

Abstract The dopamine-amino acid conjugate DA-Phen was firstly designed to obtain a useful prodrug for the therapy of Parkinson's disease, but experimental evidence shows that it effectively interacts with D1 dopamine receptors (D1DRs), leading to an enhancement in cognitive flexibility and to the development of adaptive strategies in aversive mazes, together with a decrease in despair-like behavior. In this paper, homology modelling, molecular dynamics, and site mapping of D1 receptor were carried out with the aim of further performing docking studies on other dopamine conjugates compared with D1 agonists, in the attempt to identify new compounds with potential dopaminergic activity. Two new conjugates (DA-Trp 2C, and DA-Leu 3C) have been identified as the most promising candidates, and consequently synthesized. Preliminary evaluation in terms of distribution coefficient (DpH7.4), stability in rat brain homogenate, and in human plasma confirmed that DA-Trp (2C), and DA-Leu (3C) could be considered as very valuable candidates for further in vivo studies as new dopaminergic drugs.

10.1016/j.ejmech.2016.08.051https://pubmed.ncbi.nlm.nih.gov/27597419