0000000000180030

AUTHOR

Alexander H. Dalpke

showing 10 related works from this author

A modified dinucleotide motif specifies tRNA recognition by TLR7

2014

RNA can function as a pathogen-associated molecular pattern (PAMP) whose recognition by the innate immune system alerts the body to an impending microbial infection. The recognition of tRNA as either self or nonself RNA by TLR7 depends on its modification patterns. In particular, it is known that the presence of a ribose methylated guanosine at position 18, which is overrepresented in self-RNA, antagonizes an immune response. Here, we report that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The most efficient nucleobases combination of this motif includes two purines, while pyrimidines diminish t…

Models MolecularMolecular Sequence DataGuanosineBiologySubstrate Specificitychemistry.chemical_compoundRNA TransferRiboseHumansNucleotideBinding siteLetter to the EditorMolecular BiologyCells Culturedchemistry.chemical_classificationGeneticsBinding SitesInnate immune systemBase Sequencevirus diseasesRNAMethylationToll-Like Receptor 7chemistryTransfer RNANucleic Acid ConformationProtein BindingRNA
researchProduct

2'-O-methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recogn…

2019

Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2′-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm…

0303 health sciencesTRNA modificationInnate immune system030302 biochemistry & molecular biologyRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyTLR7BiologyTLR8[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyCell biology03 medical and health sciencesImmune system[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Transfer RNAGene expression[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Molecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology
researchProduct

Recognition of Specified RNA Modifications by the Innate Immune System

2015

Microbial nucleic acids have been described as important activators of human innate immune responses by triggering so-called pattern recognition receptors (PRRs) that are expressed on innate immune cells, including plasmacytoid dendritic cells and monocytes. Although host and microbial nucleic acids share pronounced chemical and structural similarities, they significantly differ in their posttranscriptional modification profile, allowing the host to discriminate between self and nonself. In this regard, ribose 2'-O-methylation has been discovered as suppressor of RNA-induced PRR activation. Although 2'-O-methylation occurs with higher frequencies in eukaryotic than in prokaryotic RNA, the i…

GeneticsImmune systemInnate immune systemImmunityCCL18Pattern recognition receptorNucleic acidRNATransfectionBiologyCell biology
researchProduct

Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7

2017

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccine…

0301 basic medicineMessenger RNAGene knockdownToll-like receptormRNAImmunologyPattern recognition receptorRNATLR7BiologyMolecular biologyCell biology03 medical and health sciencessmall molecules030104 developmental biologysiRNAclick chemistryNucleic acidImmunology and Allergytoll-like receptorimmunostimulationbioconjugateSingle-Stranded RNAOriginal ResearchFrontiers in Immunology
researchProduct

Identification of an optimized 2′-O-methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8

2017

Bacterial RNA serves an important function as activator of the innate immune system. In humans bacterial RNA is sensed by the endosomal receptors TLR7 and TLR8. Differences in the posttranscriptional modification profile of prokaryotic when compared with eukaryotic RNA allow innate immune cells to discriminate between “host” and “foreign” RNA. Ribose 2′-O-methylation is of particular importance and has been reported to antagonize TLR7/8 activation. Yet, the exact sequence context in which 2′-O-methylation has to occur to mediate its inhibitory activity remains largely undefined. On the basis of a naturally occurring 2′-O-methylated RNA sequence, we performed a systematic permutation of the …

0301 basic medicineCytidineBiologyBioinformaticsMethylationInhibitory Concentration 5003 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA TransferReportRiboseHumansNucleotideNucleotide MotifsMolecular Biologychemistry.chemical_classificationInnate immune systemNucleotides2'-O-methylationRNATLR7TLR8Cell biologyRNA Bacterial030104 developmental biologyToll-Like Receptor 7chemistryToll-Like Receptor 8MutationLeukocytes MononuclearNucleic acidRNA030215 immunologyRNA
researchProduct

Double methylation of tRNA-U54 to 2′-O-methylthymidine (Tm) synergistically decreases immune response by Toll-like receptor 7

2018

Abstract Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2′-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentia…

0301 basic medicineBiology[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMethylation03 medical and health sciencesRNA TransferInterferonNucleic Acids[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]RNA and RNA-protein complexesGeneticsmedicineHumansComputingMilieux_MISCELLANEOUSToll-like receptorInnate immune systemGuanosine030102 biochemistry & molecular biologyPattern recognition receptorRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyTLR7Immunity InnateCell biology030104 developmental biologyToll-Like Receptor 7Transfer RNALeukocytes MononuclearNucleic acid[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]InterferonsHydrogenThymidinemedicine.drug
researchProduct

Next‐Generation Sequencing‐Based RiboMethSeq Protocol for Analysis of tRNA 2′‐O‐Methylation

2017

Analysis of RNA modifications by traditional physico‐chemical approaches is labor  intensive,  requires  substantial  amounts  of  input  material  and  only  allows  site‐by‐site  measurements.  The  recent  development  of  qualitative  and  quantitative  approaches  based  on   next‐generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA  species.  The  Illumina  sequencing‐based  RiboMethSeq  protocol  was  initially  developed  and  successfully applied for mapping of ribosomal RNA (rRNA) 2′‐O‐methylations. This method also  gives excellent results in the quantitative analysis of rRNA modifications in different species and  under varying growth condi…

0301 basic medicine2 -O-methylationSaccharomyces cerevisiaelcsh:QR1-502Biochemistrylcsh:MicrobiologyDNA sequencingdeleted strain03 medical and health sciences[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] deleted strainTrmH 2′‐O‐methylationMolecular BiologytRNAIllumina dye sequencingRiboMethSeq TRM3Genetics RiboMethSeq030102 biochemistry & molecular biologybiologytRNA; 2′‐O‐methylation; RiboMethSeq; high‐throughput sequencing; deleted strain;  TrmH; TRM32'-O-methylationRNAhigh-throughput sequencing[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMethylation  TrmHRibosomal RNAbiology.organism_classification030104 developmental biology high‐throughput sequencingTRM3Transfer RNA
researchProduct

Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke

2011

T lymphocytes are increasingly recognized as key modulators of detrimental inflammatory cascades in acute ischaemic stroke, but the potential of T cell-targeted therapy in brain ischaemia is largely unexplored. Here, we characterize the effect of inhibiting leukocyte very late antigen-4 and endothelial vascular cell adhesion molecule-1-mediated brain invasion-currently the most effective strategy in primary neuroinflammatory brain disease in murine ischaemic stroke models. Very late antigen-4 blockade by monoclonal antibodies improved outcome in models of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic cytokine production without increasing the susceptibilit…

MalePore Forming Cytotoxic ProteinsIntegrin alpha4medicine.medical_treatmentT cellVascular Cell Adhesion Molecule-1Enzyme-Linked Immunosorbent AssayInflammationBrain ischemiaInterferon-gammaMicechemistry.chemical_compoundCell MovementLeukocytesAnimalsCytotoxic T cellMedicineLymphocytesVCAM-1Cell adhesionGait Disorders NeurologicNeuroinflammationMice KnockoutPerforinbusiness.industryAntibodies MonoclonalBrainFlow Cytometrymedicine.diseaseUp-RegulationDNA-Binding ProteinsMice Inbred C57BLStrokeDisease Models AnimalCytokinemedicine.anatomical_structurechemistryImmunologyEncephalitisNeurology (clinical)medicine.symptombusinessBrain
researchProduct

Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity

2012

2′-O-methylation of guanosine 18 is a naturally occurring tRNA modification that can suppress immune TLR7 responses.

ImmunologyMutantfungiBrief Definitive ReportRNAfood and beveragesvirus diseasesContext (language use)Biologybiochemical phenomena metabolism and nutritionmedicine.disease_causeTRNA MethyltransferasesTransplantationchemistry.chemical_compoundBiochemistrychemistryTransfer RNAmedicineImmunology and AllergyEscherichia coliDNAThe Journal of Experimental Medicine
researchProduct

RNA mediated toll-like receptor stimulation in health and disease

2012

Besides their well known functions in storage and translation of information nucleic acids have emerged as a target of pattern recognition receptors that drive activation of innate immunity. Due to the paucity of building block monomers used in nucleic acids, discrimination of host and microbial nucleic acids as a means of self/foreign discrimination is a complicated task. Pattern recognition receptors rely on discrimination by sequence, structural features and spatial compartmentalization to differentiate microbial derived nucleic acids from host ones. Microbial nucleic acid detection is important for the sensing of infectious danger and initiating an immune response to microbial attack. F…

DNA BacterialReviewComputational biologyBiologyAutoimmune DiseasesImmune systemAnimalsHumansinfectionsRNA Small Interferinginnate immunityMolecular BiologyToll-like receptorInnate immune systemBacteriaBase SequenceToll-Like ReceptorsautoimmunityPattern recognition receptormodificationsRNATranslation (biology)Bacterial InfectionsCell BiologyCompartmentalization (psychology)Immunity InnateNucleic acidsRNA BacterialImmunologyNucleic acidNucleic Acid Conformationtoll-like receptorProtein BindingRNA Biology
researchProduct