0000000000180030

AUTHOR

Alexander H. Dalpke

A modified dinucleotide motif specifies tRNA recognition by TLR7

RNA can function as a pathogen-associated molecular pattern (PAMP) whose recognition by the innate immune system alerts the body to an impending microbial infection. The recognition of tRNA as either self or nonself RNA by TLR7 depends on its modification patterns. In particular, it is known that the presence of a ribose methylated guanosine at position 18, which is overrepresented in self-RNA, antagonizes an immune response. Here, we report that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The most efficient nucleobases combination of this motif includes two purines, while pyrimidines diminish t…

research product

2'-O-methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recognition of whole organisms

Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2′-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm…

research product

Recognition of Specified RNA Modifications by the Innate Immune System

Microbial nucleic acids have been described as important activators of human innate immune responses by triggering so-called pattern recognition receptors (PRRs) that are expressed on innate immune cells, including plasmacytoid dendritic cells and monocytes. Although host and microbial nucleic acids share pronounced chemical and structural similarities, they significantly differ in their posttranscriptional modification profile, allowing the host to discriminate between self and nonself. In this regard, ribose 2'-O-methylation has been discovered as suppressor of RNA-induced PRR activation. Although 2'-O-methylation occurs with higher frequencies in eukaryotic than in prokaryotic RNA, the i…

research product

Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccine…

research product

Identification of an optimized 2′-O-methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8

Bacterial RNA serves an important function as activator of the innate immune system. In humans bacterial RNA is sensed by the endosomal receptors TLR7 and TLR8. Differences in the posttranscriptional modification profile of prokaryotic when compared with eukaryotic RNA allow innate immune cells to discriminate between “host” and “foreign” RNA. Ribose 2′-O-methylation is of particular importance and has been reported to antagonize TLR7/8 activation. Yet, the exact sequence context in which 2′-O-methylation has to occur to mediate its inhibitory activity remains largely undefined. On the basis of a naturally occurring 2′-O-methylated RNA sequence, we performed a systematic permutation of the …

research product

Double methylation of tRNA-U54 to 2′-O-methylthymidine (Tm) synergistically decreases immune response by Toll-like receptor 7

Abstract Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2′-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentia…

research product

Next‐Generation Sequencing‐Based RiboMethSeq Protocol for Analysis of tRNA 2′‐O‐Methylation

Analysis of RNA modifications by traditional physico‐chemical approaches is labor  intensive,  requires  substantial  amounts  of  input  material  and  only  allows  site‐by‐site  measurements.  The  recent  development  of  qualitative  and  quantitative  approaches  based  on   next‐generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA  species.  The  Illumina  sequencing‐based  RiboMethSeq  protocol  was  initially  developed  and  successfully applied for mapping of ribosomal RNA (rRNA) 2′‐O‐methylations. This method also  gives excellent results in the quantitative analysis of rRNA modifications in different species and  under varying growth condi…

research product

Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke

T lymphocytes are increasingly recognized as key modulators of detrimental inflammatory cascades in acute ischaemic stroke, but the potential of T cell-targeted therapy in brain ischaemia is largely unexplored. Here, we characterize the effect of inhibiting leukocyte very late antigen-4 and endothelial vascular cell adhesion molecule-1-mediated brain invasion-currently the most effective strategy in primary neuroinflammatory brain disease in murine ischaemic stroke models. Very late antigen-4 blockade by monoclonal antibodies improved outcome in models of moderate stroke lesions by inhibiting cerebral leukocyte invasion and neurotoxic cytokine production without increasing the susceptibilit…

research product

Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity

2′-O-methylation of guanosine 18 is a naturally occurring tRNA modification that can suppress immune TLR7 responses.

research product

RNA mediated toll-like receptor stimulation in health and disease

Besides their well known functions in storage and translation of information nucleic acids have emerged as a target of pattern recognition receptors that drive activation of innate immunity. Due to the paucity of building block monomers used in nucleic acids, discrimination of host and microbial nucleic acids as a means of self/foreign discrimination is a complicated task. Pattern recognition receptors rely on discrimination by sequence, structural features and spatial compartmentalization to differentiate microbial derived nucleic acids from host ones. Microbial nucleic acid detection is important for the sensing of infectious danger and initiating an immune response to microbial attack. F…

research product